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CHAPTER I. INTRODUCTION 

Problem solving is one of the experiences common to individuals. 

Illustratively, starting an automobile on a cold January morning, 

maintaining good relationships with co-workers, finding the most 

advantageous mortgage terms, planning a career change, and determining 

the identity of an unknown ion in a chemistry experiment involve problem 

solving. 

This study constitutes a specific inquiry into the categorization 

of physics text problems. In this context a physics problem is viewed 

in a manner similar to that of Newell and Simon (1972) in their 

description of a problem in general: 

To have a problem implies (at least) that 
certain information is given to the problem 
solver: Information about what is desired, 
under what conditions, by means of what tools 

and operations, starting with what initial 

information, and with access to what resources 
(p. 73). 

This is not to say that the statement of any physics problem 

explicitly contains each element of the foregoing description of a 

problem. For clarification, consider the physics problem: 

A girl (mass M) stands on the edge of a merry-go-
round (mass 10 M, radius R, rotational inertia I) 
that is not moving. She throws a rock (mass m) in 
a horizontal direction, tangent to the outer edge 
of the merry-go-round. The speed of the rock 
relative to ground is V. Neglecting friction, what 
is the angular speed of the merry-go-round? 
(Halliday & Resnick, 1974, p. 208a). 

The question, constituting the last sentence in the problem 

statement, contains what is desired (angular speed of the 
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merry-go-round) and the condition (neglecting friction). The tools and 

operations (applicable equations and subsequent algebraic manipulations) 

and access to resources (conservation of angular momentum and the 

correct expression for rotational inertia obtained from accessing 

domain-dependent knowledge in the cognitive structure of the problem 

solver and/or a physics text) are not included in the problem statement. 

The initial information is stated explicitly within the first three 

sentences of the problem statement. 

The problem-solving process as described by Newell and Simon (1972) 

includes, as one of the initial steps, the formation of an internal 

representation of the external environment. This internal 

representation provides the framework within which the problem is to be 

solved. It follows directly that the representation formed by the 

problem solver determines whether and how the problem can be solved. 

The problem solver operates on the representation rather than the 

statement of the problem. Chi, Feltovich, and Glaser (1981) define a 

problem representation as a cognitive structure, corresponding to a 

problem, that is constructed by a solver on the basis of domain-related 

knowledge and its organization. 

Achievement in mathematics and sciences such as chemistry and 

physics is heavily dependent upon the ability to solve problems. 

Physics assignments often consist of problems to be solved. Students 

competing in the Tests of Engineering Aptitude, Mathematics, and 

Science, a high school academic competition sponsored by The Junior 

Engineering Technological Society, may take a physics examination as one 
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of the available options. Sixty-five percent of the forty questions in 

a recent physics test (JETS, 1985) are problems to which one correct, 

numerical solution exists. A few other items in this test require the 

student to solve non-numerical problems. Greeno (1978) claims that the 

strengthening of students' skills in problem solving is a major 

objective of mathematics and science instruction and believes that 

students must at least acquire the specialized knowledge they need to 

solve problems in the domain of the course. 

Clearly, instruction in physics that improves the problem-solving 

processes of physics students is beneficial to them. 

Teachers have observed that problem solving is often viewed to be a 

difficult process by their students and often find the teaching of 

problem solving to be very demanding. Physics students occasionally 

tell their teachers that they understand the text but are not able to 

solve the associated problems. Champagne and Klopfer (1981) indicate 

that a remarkable degree of agreement regarding the important role of 

problem solving in the learning of science exists among science 

educators. They refer to the National Assessments of Education Progress 

(1977) results for science which indicate that deficiencies in 

higher-order mental skills such as analysis, synthesis, and evaluation 

occur in a majority of students of ages thirteen and seventeen. Since 

these skills are components of problem-solving ability which, in turn, 

is important to the learning of science, learning outcomes recommended 

by science educators do not result as often as is realistically 

desirable. Larkin and Reif (1979) view the task of teaching students to 
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become proficient problem solvers not only to be crucially important but 

also difficult. They believe that most students experience less 

difficulty in acquiring a knowledge about science than in learning the 

flexible application of this knowledge to the solution of diverse 

problems. These researchers substantiate the experiences of teachers 

and students that surface in casual conversations: Problem solving is 

difficult to learn and to teach. 

Purpose and the Research Question 

Previous learning affects later learning (Ausubel, 1968; Gagne, 

1977). Much of the problem-solving research has been done in physics, 

and more particularly in mechanics since it, while being sufficiently 

complex, is based on a relatively small number of principles and has a 

mathematical structure. Prior knowledge affects the comprehension of 

physics principles (Champagne, Klopfer, & Anderson, 1980; Champagne, 

Klopfer, & Gunstone, 1982; diSessa. 1982). Heller and Reif (1984), 

Larkin (1980), and Chi, Feltovich, and Glaser (1981), have found that 

the representation formed by the problem solver, based on 

domain-dependent knowledge, is a crucial step in the problem-solving 

process. 

Champagne, Klopfer, and Gunstone (1982) conclude that: 

Preliminary qualitative analysis of physics problems 
is seldom if ever taught explicitly. In fact, 
problem-solving instruction in physics textbooks 
makes no attempt to link the physical features of 

the real-world situations described in physics to 
abstract concepts and principles of the Newtonian 
framework (p. 37). 
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The linkage of such features becomes part of the representation of 

problems. Chi et al. (1981) believe that the categories that problem 

solvers impose on physics problems represent organized knowledge 

structures in memory (schemata) that determine the quality of the 

representation process. Research that increases the understanding of 

categorization, and thus representation, may eventually influence the 

design of instructional materials and strategies. 

This research is designed to answer the question: "Do novices and 

experts differ in the categorization of physics problems?" 

Operationally the study investigates differences in the categorization, 

important to the representation of physics problems, that are believed 

to exist between novices and experts. Chi, Feltovich, and Glaser (1981) 

claim that the categorization imposed on physics text problems by 

problem solvers and concomitant representations formed by them reveal 

differences between novice and expert physics problem solvers. This 

study, as does the Chi et al. (1981) research, requests subjects to 

categorize sets of mechanics problems using a sorting procedure. The 

categories are based on similarities of solutions that would occur if 

the subjects were to solve the problems. The subjects do not actually 

solve the problems in order to form the categories but express the 

reasons for their selection of the categories in written form. Chi et 

al. (1981) found that subjects with greater amounts of physics knowledge 

categorize primarily according to deep structures, i.e., physics laws 

and concepts. Subjects with lesser knowledge key on surface structures, 

i.e., objects such as springs, pulleys, and levers, specific physics 
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terms such as friction, and spatial arrangements. 

Objectives 

1. To verify that subjects with different degrees of 

physics knowledge differ in the categorization of 

physics (mechanics) text problems: Experts 

categorize according to deep structures and 

novices classify according to surface features. 

The subjects will sort a problem set consisting 

of most of the problems used by Chi et al. (1981). 

2. To initiate the generalization of expert-novice 

differences in categorization beyond a specific set 

of problems: To determine whether expert-novice 

differences are independent of the set of problems 

used in Objective 1. The subjects will sort a 

set of physics (mechanics) text problems 

different from that used in Objective i. 

3. To test the research outcome of experts categorizing 

according to deep structures regardless of surface 

features, novices categorizing according to sur­

face features regardless of deep structures, and 

intermediates revealing a categorizing pattern that 

is characterized by a mixture of deep structures 

and surface features (Chi et al., 1981). The sub­

jects will sort a problem set in which surface 
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features are specifically counterbalanced by deep 

structures. The problem set is different from the 

problem set used .by Chi et al. (1981) in their work on 

this objective but contains some problems common to 

the two sets. 

4E. To determine whether experts (E) categorizing a set 

of physics (mechanics) problems that contains four 

deep structures and four surface features construct 

twice as many categories as occur when they catego­

rize a set that contains two deep structures and two 

surface features. The subjects will sort a set of 

specifically counterbalanced problems that contains 

two deep structures and two surface features. The 

problem set used in Objective 3 serves as the 

comparison set. It contains four deep structures 

and four surface features. 

4N. To determine whether novices (N) categorizing a set 

of physics (mechanics) problems that contains four 

different surface features and four deep structures 

construct twice as many categories as occur when 

they categorize a set that contains two surface 

features and two deep structures. The subjects will 

sort a set of specifically counterbalanced problems, 

also used in Objective 4E, that contains two surface 

features and two deep structures. The problem set 
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used in Objective 3 serves as the comparison set. 

It contains four deep structures and four surface 

features. 

Hypotheses 

The hypotheses are derived directly from the preceding objectives. 

1. Experts will categorize physics (mechanics) problems 

on the basis of deep structures and novices will 

categorize these problems on the basis of surface 

features. 

2. Experts will categorize a different- set of physics 

(mechanics) problems on the basis of deep structures 

and novices will categorize this set on the basis 

of surface features. 

3. Experts will categorize physics (mechanics) problems 

according to deep structures regardless of surface 

features and novices will categorize these problems 

according to surface features regardless of deep 

structures. Intermediates will reveal a categorizing 

pattern that is characterized by a mixture of deep 

structures and surface features. 

4E. Experts (E) will categorize a set of physics 

(mechanics) problems according to deep structures 

regardless of surface features with the number of 

fi established categories approximately equal to the 
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number of deep structures contained within the set. 

4N. Novices (N) will categorize a set of physics 

(mechanics) problems according to surface features 

regardless of deep structures with the number of 

established categories approximately equal to the 

number of surface features contained within the 

set. 

Definition of Terms 

Deep structures - Included in the problems used in the 

sorting tasks: physics laws and concepts used in the 
categorization and/or representation of physics 
problems. 

Expert - Physicist, holding the Ph.D. degree in physics, 
who has taught physics courses in a college or 
university. 

Intermediate - Person who has completed more than a one-
year physics course but less than a B.S. degree in 
physics; person intermediate between novice and 
expert . 

Novice - Person who has completed the mechanics portion 
of a first-year physics course but who has not begun 

a physics course beyond this first-year course. 

Problem - Situation in which the problem solver has cer­
tain information about what is desired, under what con­
ditions, by means of what tools and operations, starting 
with what information, and with access to what resources 

(Newell & Simon, 1972). 

Representation - Schema by means of which the problem sol­
ver describes the environment and solves a problem by 
mental operations on this description; a transformation 
of presented information. 

Schema - Organized knowledge structure within memory 
that contains knowledge about a concept. 

According to Gagne (1985): Includes static 
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qualities (structures), active qualities (expectancy 
toward information), conscious use (for example, retrie­
val guidance), and automatic use (for example, recog­
nition of a new instance of a concept). Operational­

ly, as used by Andre (1986): Representation of concepts 

(categories), principles/rules (relationships between 
concepts), and skills (activities requiring several 
steps), pl.: Schémas, schemata. 

Surface features - Included in the problems used in the 
sorting tasks: Objects such as levers, springs, and pul­

leys; specific physics terms such as friction and force; 
spatial arrangements. 

Assumptions 

1. One qualitative and/or quantitative answer to each 

physics problem in the study is assumed to exist 

although solutions may differ. 

2. Newell and SinKJn (1972) do not rule out that 

learning occurs during tasks that last tens of 

minutes. It is assumed that the extent of 

learning that may occur during the sorting tasks 

does not affect the performance states of the 

subjects. 

3. Research-based knowledge about similarities such as 

Aristotelian concepts in the cognitive structure of 

students can serve as a basis for the design of in­

structional materials such as the interactive soft­

ware by Champagne and Klopfer (1982). The links 

between problem categorization/representation and 

the design of actual instructional material are 
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not known: This is a particular case of the well-

known difficulty of applying research findings to 

classroom practice. However, if categorization 

and representation are important to the problem-

solving process, it follows that knowledge 

concerning such categorization and representation 

will eventually be embodied in instructional 

materials and strategies. 

Delimitations 

Problem solving is often associated with learning. Novak (1976) 

believes the ability to solve relevant but novel problems to be the test 

for determining whether meaningful learning has occurred as he views 

problem solving to be a kind of meaningful learning within the 

perspectives of Ausubel's learning theory. 

This research involves only mechanics problems and it is not 

assumed that the results are equally applicable to areas such as 

thermodynamics or quantum mechanics. 

This study is concerned with the performance of individuals rather 

than their learning processes and relegates to problem solving the kind 

of place as is done by Newell and Simon (1972); 

This study is concerned with thinking - or that sub-
portion of it called problem solving - but it ap­
proaches the subject in a definite way. It asserts 
specifically that thinking can be explained by means 
of an information processing theory (pp. 4, 5). 

Studies in problem solving often involve small numbers of subjects. 



www.manaraa.com

12 

The numbers of subjects in studies by Simon and Simon (1978), Larkin 

(1980), Chi et al. (1981), and Heller and Reif (1984) accomplishing a 

given task, are, respectively, one, six, eight, and twenty-four. 

The small numbers of subjects in various problem-solving studies 

occur, in part, because of the application of information processing 

(considered in the beginning of Chapter II) to psychology. As expressed 

by Newell and Simon (1972): 

The technical apparatus for conceptualizing infor­
mation processing systems leads first of all to 

constructing particular programs that accomplish 
particular tasks. When applied to psychology, this 
procedure leads naturally to constructing informa­
tion processing systems that model the behavior 

of a single individual in a single task situation. 
Full particularization is the rule, not the ex­

ception. Thus it becomes a problem to get back 
from this particularity to theories that describe 
a class of humans, or to processes and mechanisms 
that are found in all humans (p. 10). 

In the information-processing model, the human being is viewed as a 

complex mechanism with constituents that can eventually be understood in 

detail. The individual human is considered as a "world" that in itself 

provides the realm of the investigation and this "world" may be studied 

in a small number of subjects. 

A second reason for the small number of subjects involved in these 

studies is related to the full particularity just mentioned. The 

detailed and multi-faceted nature of the data within a complicated 

context that often results from these studies taxes the available time 

and resources of the researchers. 

A reason interwoven with the preceding thoughts is that of the 

frequently limited availability of subjects such as Ph.D. physicists who 
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are willing or able to devote the time necessary to complete tasks 

within this field of research. 

The foregoing discourse does not preclude the use of other methods 

such as the analysis of variance, for which greater numbers are needed. 

Shulman (1980) suggests that the methods of analysis should be chosen 

carefully as he claims that the best research programs will reflect 

intelligent deployment of a diversity of research methods applied to 

their appropriate research questions: Methodologies may be combined in 

worthwhile studies. 

This study utilizes cluster analysis for the treatment of 

categorization data. Cluster analysis is used to arrange a set of items 

(problems in this study) into subsets (clusters) so that items within a 

cluster have a high degree of homogeneity when compared to items from 

different clusters. A dendogram, a graphical representation that may be 

derived from association matrices, is used to present cluster analysis 

information. This research, with only partial reliance on the 

well-known quantitative techniques, strives.for a measure of 

generalizability within the context of cognitive work in problem 

solving. 
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CHAPTER II. REVIEW OF LITERATURE 

What occurs in the mind? How does learning occur? What are the 

components of problem solving? These questions touch upon human 

intelligence and may be treated in cognitive psychology. Intelligence 

and its site, the brain, have aroused man's curiosity for hundreds of 

years. The brain is of such complexity that the understanding of 

thought presently cannot rest on physiological or chemical studies: 

Billions of neurons participate in a vast number of chemical reactions 

involving complex substances. Even if the functions of each neuron were 

known in detail, the resulting explanation would be immensely 

cumbersome. Presently cognitive psychologists use the 

information-processing approach rather than a physiologically-based 

approach in problem-solving research. 

Similarities between human thought processes and those occurring in 

computers have contributed to practical acceptance of this approach. 

High-level languages such as BASIC and LOGO make use of statements that 

are converted to machine-level instructions as a computer carries out a 

specified task. The higher-level language may be used to describe the 

behavior of the computer without resorting to machine language. 

Cognitive psychologists use constructs for the description of 

intelligence without dependence on a detailed mapping of structures and 

functions of the brain. 
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Nature of the Cognitive System 

The information-processing model has a degree of abstraction that 

precludes the necessity of associating specific architectural components 

with particular physical parts of the brain. Thus, in a sense, one can 

think of the architecture of the human information-processing system 

independent of the consideration of the physical brain. 

Atkinson and Shiffrin (1968) proposed a model including the sensory 

register, short-term store (memory), and long-term store (memory). 

Figure 1 facilitates a brief discussion of the human 

information-processing system. Not all cognitive psychologists accept 

the same model; Figure 2 depicts the Distributed Memory Model (Hunt, 

1971, 1973) that also assumes the existence of different memory areas in 

the brain. Information is distributed into these memory areas and may 

be transferred among them as indicated in Figure 2. The models, as does 

the mind, receive, change, store, retrieve, and use information. The 

models are different, but each contains the sensory register (buffer), 

the short-term store (memory), and the long-term store (memory), and 

allow for the tracing of information through the system. 

The flow of information is mostly governed by processes that are 

controlled by the individual who, as such, assumes an active role in 

thinking, or more specifically, problem solving. In Figure 1, 

environmental stimuli (informational inputs) enter the sensory register 

and some of them are changed to an internal code. The sensory register 

retains the coded information for a very brief interval (fractions of 

seconds). The expectancy of an individual partially determines which of 
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the various stimuli eventually are stored, in changed form, for later 

retrieval and use. The individual's motivation, prior learning and 

experiences, and instructions received by the individual give rise to 

this expectation which is a kind of awareness or anticipation that 

certain events are likely to occur in a given situation. Different 

individuals receiving the same stimuli, because of different schemata in 

long-term memory (LTM) which affect pattern recognition that is brought 

to bear on information in the sensory register, differ in the 

information that they allow to be passed into short-term memory (STM). 

In Figure 2, the environmental stimulus moves through the intermediate 

buffers. Networks in LTM affect information in the intermediate 

buffers. Interactions between LTM and the intermediate buffers 

continuously and hierarchically develop the information until it, in the 

form of complex codes, enters STM where it remains for a few seconds 

unless it is rehearsed. 

Both models provide for the transmission of information from STM to 

LTM. The first model proposes chunking (reorganization of information) 

and rehearsal in order to increase selectively the amount of information 

that is retained in STM. Rehearsal and elaborative encoding facilitate 

the transfer of information from STM to LTM. Not all rehearsal results 

in such transfer. Maintenance rehearsal tends to keep information in 

STM, also called the working memory, without increasing the 

informational content of LTM. Not all models include a store that may 

alternatively be called STM or working memory: The model proposed by 

Greeno (1973) includes a working memory separate from but interacting 
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with STM. 

The information that is to be learned can be modified by elaborative 

encoding. The altered representations that result are then stored in 

LTM. According to Paivio (1971) there are two kinds of memory 

representation (elaborative encoding strategies). The imagery system 

stores information with analogical keys to perceptual qualities such as 

smell and tone while the verbal system allows information to be stored 

in an abstract linguistic form that relates to objects and actions in an 

arbitrary fashion. Retention of information is increased when it is 

encoded in both systems, i.e., dual encoding. Elaborative encoding 

changes information that is to be learned to a form that is more 

meaningful to the individual and may be of the semantic type in which a 

verbal mediator may be formed. For example, the expression "cks" might 

be encoded into a meaningful word such as "crankshaft" and stored in 

that form. Later the word may be retrieved and recoded to "cks." 

Organization of the content to be stored is another form of semantic 

encoding. 

People tend to cluster information in an effort to Increase memory. 

The capacity of STM is considered to be what Miller (1956) called "the 

magical number seven plus or minus two," i.e., the number of items that 

can be recalled in order immediately after an introduction to a list. 

The amount of information held in STM is important as it is available 

for encoding and transfer to LTM. 

The Distributed Memory Model includes an intermediate-term memory 

(ITM) that contains developing ideas for periods on the order of several 
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minutes to hours before being transferred to LTM. Hunt and Poltrock 

(1974) claim the existence of ITM on logical grounds rather than 

empirical evidence. 

Both models include LTM as the area of permanent and virtually 

limitless storage. The permanence of this stored information implies 

that forgetting is tantamount to being unable to access such 

information. The framework in LTM may be compared to a library in which 

books are stored and classified or to the permanent memory of a 

computing system. Both analogies have in common that information is 

stored and retrieved in certain ways. 

Models of the human information-processing system, while not 

identical, provide an abstract "place" within which activities such as 

the solving of physics problems occurs. 

Much of cognitive learning theory is related to the 

information-processing approach. 

Cognitive Learning Theory 

The recurring theme of later learning being affected by previous 

learning rests on the belief that conditions for learning must exist 

within the cognitive structure of the learner. Gagne (1977) groups 

these internal conditions into general prerequisites that allow for new 

learning to occur and specific prerequisites that become incorporated 

into new learning. Examples of general prerequisites are reading and 

memory strategies. Knowing how to differentiate in order to obtain an 

acceleration expression from a velocity expression is an example of a 
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specific prerequisite. Gagne recognizes five learning domains: Motor 

skills, attitude, verbal information, intellectual skills (mental 

operations such as discriminations and rules performed on internal 

representations), and cognitive strategies» 

Dubois, Alverson, and Staley (1979) reclassify Gagne's domains in 

order to bring about a better conformance with the taxonomy of learning 

as constructed by Bloom (1971). The reclassified domains are the 

psychomotor domain, the affective domain, the cognitive domain (Gagne's 

verbal information and the learning of concepts and rules from the 

intellectual skills domain), and the mathemagenic domain. Rothkopf 

(1970) introduced the word "mathemagenic" in the phrase "mathemagenic 

activities" to describe those activities that largely determine what 

people learn as they interact with instructional materials. Dubois et 

al. (1979) use "mathemagenic activities" to describe all strategies that 

the learner uses in the learning of new material. In this context, 

tasks that involve mathemagenic skills are viewed as problem-solving 

situations in which prior knowledge and mathemagenic skills are applied. 

Mayer (1980) describes the mathemagenic domain in terms of behaviors 

produced by the learner during the course of learning that influence the 

learning of the material under consideration. 

In a sense, to live is to deal with a continuous sequence of 

problems. Problem solving includes a myriad of components such as 

necessity, motivation, curiosity, tenacity, and rewards. The research 

in problem solving has not dealt with all kinds of problems in life but 

has centered on cognitive rather than affective elements. The 
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problem-solving process occurs primarily within the cognitive domain. 

The mathemagenic domain is also involved because of the importance cf 

problem solving to the learning of subjects such as chemistry and 

physics. Cognitive learning theories such as Gagne's allow for the 

ascription of certain mental activities to domains. Such theories 

attempt to explain how learning occurs. Prior learning is brought to 

bear on the problem-solving process. Because of such connections 

between learning and problem solving, cognitive knowledge concerning 

problem solving is relatable to a learning-theory framework. Thus, 

while the purpose of this study involves problem categorization, 

cognitive learning theory and developments in problem-solving research 

form a consonant relationship. 

• Ausubel's cognitive learning theory (1968) predated much of the 

current cognitively oriented research in problem solving. This theory 

is selected here to illustrate the compatibility of notions such as 

schemata as used in learning theory with their use in problem-solving 

research: Schemata are organized structures in memory that contain 

knowledge about concepts. The choice of Ausubel's work was made because 

this theory provides a framework of relating new information to existing 

information in cognitive structure as concepts are learned. Concepts, 

in this perspective, 

...describe some regularity in relationship within 
a group of facts and are designated by some sign or 
symbol. Thus red is a concept describing the regu­
larity of color, but the label "red" is also used 
to describe a regularity in the political stance of 
an individual or group (Novak, 1977, p. 18). 

This meaning of the word "concept" is compatible with the meaning used 
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in much cognitive work. 

Piaget's cognitive developmental theory of learning is often 

discussed and presented through the writing of others who have studied 

his work in detail. Ausubel's theory is treated by Novak (1977) as he 

interprets Ausubel's theory in depth and Dubois, Alverson, and Staley 

(1979) as they present a brief summary of this work. This study draws 

upon these writings. 

Meaningful learning is the fundamental idea in Ausubel's theory. 

Meaningful learning occurs when new information is related to knowledge 

possessed by the learner, i.e., incoming information is linked with the 

relevant schemata within the cognitive structure in LTM of the learner. 

The new information must have a certain form in order to be relatable: 

In order for meaningful learning to occur, the in­
formation itself must have certain qualities. Such 
information has logical meaning...the critical 

qualities it possesses are substantiveness and 

nona rbi t rari ne s s. 

Substantiveness means that the information is ca­
pable of being paraphrased without changing the 
idea expressed. If the idea expressed in the 

information has a nonarbitrary relationship to 

another idea, then the information is said to 
possess "nonarbitrariness" (Dubois, Alverson, & 

Staley, 1979, pp. 132, 133). 

Consideration of an example may be helpful. The statement "teachers are 

learners" may be stated as "teachers are people who show new behaviors 

in a given situation caused by their repeated experiences in that 

situation." Not only does the expression yield to paraphrasing without 

a loss in meaning but also relates teachers to learners through the use 

of "people" which is clearly a nonarbitrary relationship. 
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Concepts that are being acquired must be linked with 

previously-learned concepts. Ausubel uses the'notion of a subsuming 

concept or subsumer as a mechanism for envisioning and explaining such 

linkage. 

...the role of a subsuming concept in meaningful 
learning is an interactive one, facilitating move­
ment of relevant information and previously 
acquired knowledge. Futhermore, in the course of 
this linkage, the subsuming concept becomes 
slightly modified J and the stored information is 
also altered somewhat. 

...in the course of meaningful learning a sub­
sumer becomes modified and differentiated further. 
Differentiation of subsumers results from assimi­
lation of new knowledge in the course of meaning­
ful learning (Novak, 1977, pp 82, 83). 

Subsumption, formation of a relationship, may be superordinate, 

subordinate, or combinatorial (Ausubel & Robinson, 1969). Superordinate 

subsumpt ion occurs when the existing schemata in LTM are less inclusive 

than the new information. A physics student may know that velocity 

involves direction, that pushing on the accelerator pedal of an 

automobile and releasing such a pedal have opposite effects, and that an 

applied net force on an object acts in the same direction as the 

subsequent acceleration. When this student now learns that such 

physical quantities include direction as well as magnitude (size) and 

are examples of vector quantities, superordinate subsumption has 

occurred. The resulting schema representing "vector" has been formed. 

The student may now observe an object in a physics experiment, determine 

its linear momentum (equaling the product of mass and velocity), and 

conclude that linear momentum is a vector quantity. Subordinate 

subsumption has occurred as the student recognizes that linear momentum 
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is a particular instance of the concept "vector." The student may draw 

a vector diagram in order to add the momenta of two objects that collide 

during an experiment. A similar diagram may be drawn for the addition 

of the forces that act on the objects at a given time. Physical 

situations explained by vector diagrams and understood in terms of such 

diagrams illustrate combinatorial subsumption. 

Information may be learned in a rote or meaningful fashion. Figure 

3 (Novak, Ring, & Tamir, 1970) depicts rote learning as the acquisition 

of information that is stored independently as no subsumer exists. 

Information that can be related to a subsuming concept is learned 

meaningfully. Figure 4 (Novak et al., 1970) shows enlargement of the 

subsumer as further meaningful learning occurs. Novak (1977), noting 

that absolute rote learning probably only occurs in a newborn infant, 

stresses that rote learning and meaningful learning are related by means 

of a continuum. This, in turn, implies that meaningful learning 

increases with the size and number of the relevant schemata. 

The work of Kuhn (1962) is employed by Champagne and Klopfer (1981) 

and Novak (1977) in dealing with learning research in science. Kuhn 

believes that the paradigms held by scientists largely determine which 

problems are researchable and also influence the choice of methodology 

used to investigate those problems. The shift from one paradigm to 

another is not accomplished easily but, when it does occur, increasing 

numbers of scientists accept the new paradigm. They then "see" the 

problem at hand differently and propose different solutions. Novak 

argues that Kuhn's social and conceptual frameworks not only guide 
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OUTPUT 
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(Novak, Ring, & Tamir,. 1970) 

Figure 3. Information and subsuming concept 

INPUT 
KNOWLEDGE 
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(Novak, Ring; & Tamir, 1970) 

Figure 4. Changing a subsuming concept 
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scientific inquiry but all human inquiry and asks: "If science is 

recognized as evolving populations of concepts which guide both our 

methods of inquiry and our.interpretations of our findings, should not 

science instruction also focus on concept learning?" (Novak, 1976, p. 

496). Novak answers that question in the affirmative and advances 

Ausubel's theory as having the breadth necessary to address the 

epistemological and conceptual demands of learning research in science 

education. 

Since learning partly depends on existing knowledge, cognitive 

knowledge theory is now explored briefly. 

Cognitive Knowledge Theory 

Newell and Simon (1972) call learning a second-order effect as it 

changes a system capable of certain performances into a system that can 

accomplish additional things. This changed system retains much of the 

pre-existing performance capability. This means that performance must 

be understood before learning processes can be studied in a theoretical 

context. It also means that there is a difference between performing a 

task and learning to perform a task. The purpose of this study, to 

investigate differences in the categorization of physics problems that 

are believed to exist between novices and experts, is related to 

performance. Thus it becomes important to focus on cognitive knowledge 

theory. To ask about the components of problem solving involves the 

ways in which information is stored in LTM. Yet it is reasonable to 

consider cognitive knowledge while concomitantly holding such knowledge 



www.manaraa.com

27 

against a learning theory backdrop as novices become experts through 

learning processes. A learning theory, at the very least, should be 

able to encompass the accumulating findings in cognitive research. A. 

learning theory may guide learning research as Novak (1976) suggests 

and, because of the interdependence of learning and performance, the 

accumulating findings in problem-solving research may eventually be used 

in testing the theory and necessitate changes in its substance or 

interpretation. More specifically, because of the choice of Ausubel's 

theory in this study, definitions and concepts used in cognitive 

knowledge theory are expected to be appropriate for the description of 

the processes that relate new knowledge to existing schemata. 

How does a novice problem solver differ from an expert problem 

solver in a given domain such as mechanics? Most answers to the 

question would probably include mention of a difference in knowledge. 

As mentioned earlier, Larkin and Reif (1979) believe that most students 

find that solving diverse problems is more difficult than acquiring 

knowledge about the science content that needs to be applied to the 

solving of such problems. Different kinds of knowledge seem to be 

involved as physics students give evidence of knowing about the 

principles essential to the solution of certain problems but are not 

able to solve them. Knowing "that" (being able to verbalize something) 

and knowing "how" involve different aspects of knowledge. A distinction 

between declarative knowledge (knowing "that") and procedural knowledge 

(knowing "how") may be used in a cognitive representation of knowledge. 

Declarative knowledge may be represented by means of propositions. 
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Gagne (1985) defines a proposition as a basic unit of information that 

approximates a single idea. A proposition contains a set of arguments 

(one or more) and a relation: The arguments are the topics of the 

proposition and the relation constrains the topics. Arguments most 

often are nouns and pronouns but may be verbs and adjectives. Relations 

usually occur as verbs, adverbs, adjectives, and prepositions. Consider 

the separate propositions that represent the three ideas in the sentence 

"A net force on a body causes acceleration." Note that this statement 

contains three ideas : 

1) A force on a body 
2) A force causes acceleration 
3) Net force 

The respective propositions may be stated; 

1) Relation - on; arguments - force (subject, S), 
body (object, 0) 

2) Relation - causes; arguments - force 

(subject, S), acceleration (object, 0) 
3) Relation - net; argument - force (object, S) 

Figure 5A depicts the separate propositions in node-link form. The 

nodes, shown as circles, represent the propositions. Each link, shown 

as an arrow, is directed toward an element of the proposition and is 

labeled to identify the function of the element: R for relation, S for 

subject, and 0 for object. Propositions that contain common elements 

may be interconnected to form propositional networks. The three 

separate propositions in Figure 5A may be grouped about the common 

element "force" and thus constitute one propositional network (see 

Figure 5B). This relatively simple network illustrates a possible 

structure of declarative knowledge in LTM. 
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Figure 5A. Separate propositions 
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Figure 5B. Froposiîional network 
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Knowing that a net force on a body causes the acceleration of the 

body may not enable a person to solve a problem. Consider the physics 

problem: 

Two forces, F(l) in a northerly direction and F(2) 
in a southerly direction, act simultaneously on a 
body of mass m that is free to move with negligible 
friction. F(l) is greater than F(2). Calculate 
the acceleration of the body. 

A solution, shown in Figure 6A, results in the acceleration, a = [F(l) -

F(2)]/m, in a northerly direction. Note the direction of the 

acceleration is indicated by an f. A problem solver, carrying out this 

solution, must use declarative knowledge as well as procedural 

knowledge. Procedural knowledge can be represented by means of 

productions. A production is a condition-action statement. Consider a 

sample production: 

IF The name on the envelope is P. P. Solver 
And the label on the mailbox indicates 
P. P. Solver 

THEN Place the envelope in the mailbox. 

The IF clause is the condition statement and the THEN clause is the 

action statement. Productions may be joined to form systems or 

networks. Note that, in Figure 6B, the action of a production becomes 

the condition for the succeeding production, e.g., the action of P(l) 

becomes the condition for P(2) and the action of P(2) becomes the 

condition for P(3). Productions, in this fashion, may be interconnected 

through the "flow of control" (Gagne, 1985). 

Acceleration is a vector quantity. Such quantities include 

magnitude and direction. The production system in Figure 6B results in 

the magnitude of the acceleration equaling [F(l) - F(2)]/m. The 
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North (+) 

i" 

South (-) 

F = Ma 

F^ + (-Fg) = Ma 

F^ - Fg = Ma 

Fg M 

Figure 6A. Sample solution to a mechanics problem 
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1 

IF 

THEN 

2 

IF 

3 

IF 

The goal Is to calculate the acceleration ̂  of 

the body and M, Fj^, and F^ are known 

Draw a diagram Indicating each force, the mass, 
and the geographical orientation and set stibgcal 

to calculate the net force on the body. 

Result 

M 

Subgoal is to calculate the net force on the body. 

THEN Assign "positive" to North and "negative" to 
South and calculate the net force by adding Fj^ 

and F2 write the net force in terms of F. and F„ 
and set subgoal to write an equation that £F 
includes net force, mass, and acceleration a. 

Result 

+ N 

" r 
= F + (-F ) 

=  F J  -  F2 2  

Subgoal is to write an equation that relates net 

force, mass, and acceleration a. 

THEN Write the equation and set subgoal to substitute 

the net force in terms of F and F« into the 
equation. 

P^ Result 

^ F = ma 

4 

IF 

THEN 

Subgoal is to substitute the net force in terms 

of F, and F„ into the .equation. 
1 6 

Substitute the net force in terms of F and F^ 

into the equation and write the resulting equation 
and set subgoal to solve it for 

P, Result 
4 

F^ - Fg = ma 

5 

IF Subgoal is to solve the resulting equation for ja 

Pg Result 

THEN Solve the resulting equation for £ and write 
the answer. a = - ̂ 2 

m 

Figure 6B. Production system for a mechanics problem 
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_ —* —» —* 
direction can be deduced from knowing that LF = ma where F and a are 

vector quantities. In effect, Sf = ma is a constrained form of Ef = ma 

that is to be applied to only one spatial dimension. Implied in gF = ma 

is that ZF and a have the same direction. ZF = F(l) - F(2) acts in a 

positive or northerly direction. Knowing that EF and "a are in the same 

direction may be viewed as an idea for which a proposition could be 

written, i.e., it is known in declarative fashion. Figure 6B, in which 

the production system displays procedural knowledge, includes arrows of 

different lengths. The declarative knowledge that arrows are used to 

represent vector quantities with the arrow heads indicating direction 

and the lengths of the arrows being proportional to the magnitudes of 

the represented quantities is necessary to bring about the result of 

P(l). 

When the distinction between declarative and procedural knowledge 

is made, it seems evident that the solution of physics problems involves 

both kinds of knowledge. The distinction between the two kinds of 

knowledge, often useful, is not necessarily sharp. Consider, for 

example, P(3): The subgoal is to write an equation that relates net 

force, mass, and acceleration a. It seems tenable that a problem 

solver may have stored the knowledge of this equation in production 

form: 

IF The mass of an object remains constant and a 
net force acts on the object 

THEN The net force is proportional to the acceler-

a tion 

and 

IF The net force on an object is constant 
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THEN The acceleration of the object is inversely 
proportional to its mass 

and 

IF A net force acts on an object 
THEN The resulting acceleration is in the same 

direction as the net force 

When, in the course of working out the solution to a problem, it becomes 

necessary to incorporate these ideas in one mathematical relation, the 

problem solver may write ZF = ma. The IF clause of P(3), for example, 

may access these productions. It seems equally reasonable that the 

knowledge of this equation may have been stored as a prepositional 

network containing the propositions: 

1) Force is proportional to acceleration 
(as mass is constant) 

2) Net force 
3) Mass is inversely proportional to acceleration 

(as force is constant) 

which may be written as: 

1) Relation - proportional to; arguments -
force (S), acceleration (0) 

2) Relation - net; argument - force (S) 
3) Relation - inversely proportional; arguments -

mass (S), acceleration (0) 

Figures 7A and 7B contain the separate propositions and the network. 

This network may be accessed by the IF clause of the same production, 

P(3), in the problem under consideration. 

The distinction between declarative and procedural knowledge 

reflects the more or less static nature of declarative knowledge and the 

relatively dynamic character of procedural knowledge. Declarative 

knowledge supplies information that is transformed by activated 

procedural knowledge (Gagne, 1985). Rumelhart and Norman (1978) do not 
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believe the distinction to be useful. The distinction is fundamental to 

the ACT (to act or to accomplish a task) system (Anderson, 1982), a 

skill acquisition model, in which facts are encoded in a propositional 

network and productions serve to encode procedures. The ACT system (a 

computer simulation) and the underlying theory include an interpretative 

system that describes the behavior of a novice in a new domain. The ACT 

theory claims that initial knowledge in a new domain exists in 

declarative form as the ACT system gradually changes this declarative 

knowledge to a procedural form. The ACT theory, in explaining how a 

cognitive skill may be acquired, involves the skill being transformed 

from the declarative stage to the procedural stage of development. 

A knowledge structure that includes both declarative and procedural 

knowledge is the schema. As viewed in this study, a schema is an 

organized structure within memory. Greeno (1973) believes schemata to 

be propositional (concepts from general experiences) and algorithmic 

(rules that operate on concepts). Consonant with this meaning, Gagne 

(1985) includes static qualities (structures), active qualities 

(expectancy toward information), conscious use (for example, retrieval 

guidance), and automatic use (for example, recognition of a new instance 

of a concept). Andre (1986) operationally understands schemata to 

include the representation of concepts (categories), principles or rules 

(relationships among concepts), and skills (activities that require 

several steps). The notion of a schema, frequently used in cognitive 

work, is not new: Bartlett (1932) believed a schema to be a structure 

that refers to an active organization of past reactions. 
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It is evident that differences in the meanings assigned to the term 

"schema" exist but Mayer (1983) finds a generally applicable meaning to 

include four common elements: 

General - a schema may be used in a wide variety of 
situations as a framework for understanding in­
formation 

Knowledge - a schema exists in memory as something 

that a person knows 
Structure - a schema is organized around some 

theme 
Comprehension - a schema contains "slots" that are 

filled in by specific information in the 
passage (p. 209). 

Mayer (1983) concludes with: 

Thus, a schema is a generalized knowledge structure 
used in comprehension. A schema serves to select 

and organize incoming information into an inte­
grated, meaningful framework (p. 209). 

A general consensus on the use of "schemata" does not exist. Mayer 

(1983) quotes Scriven (1977): 

I do not think that talking about 'schema' or 
'schemata' or 'frameworks' does much that 'tuning' 
does not or that 'gestalt' did not (p. 234). 

Andre (1986), on the other hand, holds that the formalism of a 

production system can be used, in a unifying manner, to represent 

Gagna's (1977) intellectual skills and other schemata. 

Even as a consensus on the use of "schemata" does not exist, the 

empirical evidence for their existence and the accompanying use of the 

term have made them part of the fabric of problem-solving research 

within the realm of the information-processing approach. 

Cognitive psychologists thus acknowledge schemata which are used in 

cognitive knowledge theory as it deals with the ways in which knowledge 
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is stored in memory. Representations are particular schemata by means 

of which problem solvers describe the environment and solve problems by 

mental operations on these descriptions. Representations are important 

to this study and are considered in the next section. 

Problem Representation 

A person who wants to achieve a goal without immediately knowing 

how to arrive at it is involved in a problem (Newell & Simon, 1972; 

Gagne, 1985). Mayer (1983) claims that a definition of "problem" should 

include that "1) the problem is presently in some state, but 2) it is 

desired that it be in another state, and 3) there is no direct, obvious 

way to accomplish the change" (p. 5). Clearly, this definition is 

parallel to the description of a problem as included earlier in this 

study: 

To have a problem implies (at least) that certain 
information is given to the problem solver: Infor­

mation about what is desired, under what con­
ditions, by means of what tools and operations, 
starting with what initial information, and with 
access to what resources (Newell & Simon, 

1972, p. 73). 

Problem solving is a process in which the "problem space" is 

searched. The problem space is the set of possibilities for a solution 

as perceived by a problem solver (Newell & Simon, 1972). Mayer (1983) 

views the space as the internal representation of the initial state, the 

goal state, the intermediate states, and the operators (moves that 

change one state to the next); Gagne (1985) considers the space to be 

the set of all solution paths that can lead to the goal. 
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Newell and Simon (1972), in their general problem-solving model, 

outline an organization of the problem-solving process. As input from 

the environment is translated (encoded), an internal representation of 

the external environment is formed. The problem solver proceeds in the 

framework of that representation; it is this representation that may 

"render the problem solutions obvious, obscure, or perhaps unattainable" 

(p. 88). 

The problem solver now responds to the representation by the 

selection of a particular problem-solving method which is formulated and 

interpreted in terms of the internal representation. This method, as it 

is being applied, controls the internal and external behavior of the 

problem solver. When the application of the method ceases, a solution 

may have been formed, another method may be selected, the problem may be 

reformulated in terms of a different internal representation, or the 

solution process may be abandoned. Subgoals may result from the 

application of problem-solving methods during the search of the problem 

space. 

The Gestalt psychologists viewed problem solving as a search in 

which aspects of problems were related to each other. The problem 

solver strives for structural understanding which is the ability to 

comprehend how all the parts of the problem can be arranged to satisfy 

the requirements of the goal. The elements of the problem are 

reorganized as the problem is being solved. Consider the problem of 

being given six sticks, equal in length, and being asked to form four 

equilateral triangles with each side being one stick long. Figure 8A 
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depicts an incorrect solution as each triangle contains a ninety-degree 

angle and thus is not equilateral. This two-dimensional solution may be 

changed to a three-dimensional arrangement: A pyramid with one triangle 

as the base and the three remaining triangles as sides may be formed as 

shown in Figure 8B. The Gestaltists label a new way of looking at a 

problem as insight. Changing the representation from two-dimensional to 

three-dimensional allowed for the formation of a solution. 

Mayer (1983) uses a problem based on the work of Judson and Cofer 

(1956). Consider the sequence SKYSCRAPER CATHEDRAL TEMPLE PRAYER and 

select the word that does not belong. Next, select the word that does 

not belong in the sequence CATHEDRAL PRAYER TEMPLE SKYSCRAPER. 

Judson and Cofer (1956) found that subjects generally chose PRAYER in 

the first sequence and selected SKYSCRAPER in the second series. One 

explanation is that problem solving requires assimilation of the 

elements of the problem into the past experience of the problem solver. 

This type of interpretation is consistent with meaning theory. The 

meaning theorists hold that the restructuring or reorganizing process as 

emphasized by the Gestalt psychologists needs to be guided by 

relationships between the schemata in the problem solver's memory and 

the elements of the problem under consideration. The Gestalt theory 

emphasizes the internal structure of the problem while the meaning 

theory includes relationships to schemata that exist in the memory of 

the problem solver. The relationships that link the existing schemata 

with the problem contribute to the problem representation. 

An interesting problem, attributed to Duncker (1945)» that 
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Consider the problem: 

Given six sticks, arrange them to form 

four triangles that are equilateral and 

with each side one stick long. 

The solution;- Some subjects take the six sticks 

and form a square with an X in its 

1X1 
Each triangle has a 90 degree angle and 

thus is not equilateral. 

(Mayer, 1983) 

Figure 8A. Incorrect solution of a sample problem 

I A hint: Change from two to three dimensions. 

A pyramid with one triangle as the 

base and the three remaining tri­

angles as sides may be formed. 

Insight: A new way of looking at a problem, 

such as changing from two to three 

dimensions. 

1 : 
(Mayer, 1983) 

Figure 8B. Role of insight in correct solution of a sample problem 

A 
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illustrates the importance of problem representation is used by Mayer 

(1983): 

A monk began to climb a mountain at sunrise. He 
reached the temple at the top as the sun was set­

ting and meditated all night. At sunrise of the 
next day, he came down the mountain, following 
the same path, but moving at a faster rate, of 

course. When he reached the bottom he proclaimed: 

"There is one spot along this path that I passed 
at exactly the same time of day on my way up the 

mountain as on my way down." Can you prove that 
the monk is correct? (pp. 75, 76). 

This problem may be difficult to solve algebraically. Mayer (1983) 

suggests that the problem be visualized, i.e., a representation be 

formed, as shown in Figure 9. It can be seen that there must be a point 

at which the time of day is the same for the ascending and descending 

trips. Another representation is helpful: Picture two monks, one at 

the bottom going up and one at the top going down and ask whether they 

will be at the same place at the same time at some point during their 

respective journeys (Mayer, 1983). 

Before continuing the consideration of problem representation, a 

brief view of the methods of computer simulation and think-aloud 

protocols is in order. 

Computer simulation models as used in much problem-solving research 

are able to solve the kind of problems solved by human problem solvers. 

Such models usually contain a STM with a capacity that approximates that 

of STM in the human problem solver. LTM in such models consist of 

collections of productions. The models test the condition sides of 

these productions by searching STM (working memory) for the presence of 

information elements that match these condition sides. If matches are 



www.manaraa.com

43 

PLACE 
ON 

PATH 

Bottom 

Noon 

TIMS 

(Mayer, 1983) 

Figure 9. A problem representation 
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found, the production is implemented and information is taken from or 

added to STM. An intermediate memory may be included which serves to 

hold information transferred from STM which, at appropriate times, may 

be returned to STM. Such memory does what a piece of paper accomplishes 

for a human problem solver. Models that approximate the behavior of 

humans with varying degrees of expertise yield results that may be 

compared to the results obtained by human problem solvers. 

Such comparisons are often made by the use of think-aloud 

protocols. As human problem solvers solve problems, they "think aloud" 

as their comments are being recorded on tape. The verbatim tape 

transcripts are then edited and analyzed. The quantitative statements 

are listed and sequenced. Such sequences are then compared to the 

results from computer simulations. 

Larkin, McDermott, Simon, and Simon (1980) describe two 

computer-implemented models that solve problems in ways that reflect the 

solutions of more- and less-competent human problem solvers. The models 

differ in the strategies that are employed in the selection of physics 

principles. The means-ends model focuses on the goal quantity, writes 

an equation that contains that quantity, and then rorks backward in 

order to find equations that contain quantities that still remain 

unknown. In means-ends analysis the program or a human problem solver 

works on one subgoal at a time: The difference between the present 

state of knowledge about the problem and the state that is necessary for 

the solution of the problem is assessed. The knowledge-development 

model uses patterns of information in the development of new 
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information. The models also differ in the degree of automation. The 

means-ends model writes an equation after which variables in this 

equation are connected to variables in the problem statement by other 

individual equations. The knowledge-development model, on the other 

hand, combines the selection and application of a principle, in effect 

developing new information in a single step. 

The computer results were matched with the data from one novice 

and one expert in a study by Simon and Simon (1978) where they worked 19 

problems in linear kinematics; in-depth information on the techniques 

used by these subjects was obtained. A further match was made with the 

results from 11 experts and 11 novices who solved two dynamics problems; 

this study resulted in a broader view of how experts and novices solve 

problems. The computer results characterize the sequences of applied 

principles by novices and experts: Novices set many subgoals as they 

use means-ends analysis, and experts tend to set fewer goals as they use 

more efficient and domain-dependent methods. The results also parallel 

the automation displayed by experts which differs from the explicit 

linking of variables to information in the problem statement as 

manifested by novices. Computer simulations are viewed as effective 

tools for research in epistemological studies. 

The problems are submitted to the programs in list form in which 

the language statements of the problems have been encoded: These 

representations are thus given to the program rather than constructed by 

the program after reading the problem statements. 

Representations need not necessarily be given to such programs. 
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Novak (1977) describes a computer program that solves physics.problems 

stated in English. The English sentences in the problem statement are 

transformed into a semantic network form that includes a language-free 

internal model of the objects and their characteristics and 

interrelationships, a geometric model, a set of equations, a picture 

model ; and a set of canonical object frames which interpret the actual 

objects as canonical objects. A canonical object frame - Minsky (1975) 

introduced the term "frame" - is a schema that abstracts features of 

actual objects which allows for the definition of physical laws in terms 

of the canonical objects which approximate the behavior of real objects. 

The context of a real object determines which canonical frame is to be 

used. Novak (1977) uses the example of a person being modeled as a 

point mass when sitting on a plank but as a pivot when carrying this 

plank. A specialist program operates on the canonical representation 

and the subsequent solution is applied to the specific object 

representation in order to provide a specific solution. 

Problems considered to be difficult can be solved by some computer 

programs that, surprisingly, cannot solve simpler problems. The 

importance of problem representations to subsequent solutions is evident 

as deKleer (1977) describes NEWTON, a computer program that employs 

multiple representation in solving mechanics problems. NEWTON allows 

simple questions to be answered directly and has the capacity for 

producing plans that can solve more complex problems: Qualitative 

knowledge is used to approximate expected behavior of a physical system 

by means of a process called "envisioning," while the quantitative 
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knowledge built into the program is organized in groups of mathematical 

equations which are accessed when a problem cannot be solved 

qualitatively. NEWTON, while not a general problem solver, generates 

appropriate representations that allow for the solution of simple and 

complex problems. 

Simon and Simon (1978) asked an expert subject with a strong 

mathematical background and wide experience in solving problems of the 

specific task type and a novice subject with adequate algebraic 

background and completion of a single physics course to solve 25 

kinematics problems from a high school physics text. Part of the 

purpose of the study was to describe explicit knowledge of physical laws 

that students must have and the ways in whxch such knowledge must be 

organized as a necessary underpinning for problem solving. The 

"thinking-aloud" protocols of the subjects allowed for the conclusion 

that the expert used physical intuition in solving the problems. 

Physical intuition, in this context, is interpreted by Simon and Simon 

(1978): 

When a physical situation is described in words, 
a person may construct a perspicuous represen­
tation of that situation in memory. By perspi­
cuous representation, we mean one that repre­
sents explicitly the main direct connections, 
especially causal connections, of the components 
of the situation (p. 337). 

The offered interpretation, with a disclaimer of the evidence being 

totally decisive, is that the expert translated the English statements 

of the problems into physical representations and subsequently "used 

those representations to select and instantiate the appropriate 
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equations" (Simon & Simon, 1978, p. 337), after which he solved the 

problems. Computer simulation comparisons indicated that the protocol 

of the novice might be called "algebraic" in that she appears to move 

directly from problem statements to equations without passing through 

the representation phase as did the expert whose mode of problem solving 

might be called "physical." 

Larkin (1980) examined the relationships between problem 

representation and subsequent solution in a study in which she asked six 

experienced physics problem solvers to solve a difficult physics problem 

that lends itself to being solved in many different ways. The five 

subjects who made reasonable progress constructed one or more 

qualitative representations which were used to test the feasibility of 

various theoretical approaches. The approach is then discarded or the 

construction of equations begins. The construction of a representation 

is viewed to be central to problem solving: 

In no case was the theoretical approach changed 
f ̂a ̂ •" g/N T 001X3 w 371*0 tZ € j,0ii3 # 
Thus, qualitative theoretical representations 

would seem to be crucial in the important task 
of selecting an approach (Larkin, 1980, p. 122). 

Larkin (1980) mentions that she and John McDermott are developing 

programs that simulate the order in which expert and novice subjects 

apply physics principles as they solve mechanics problems. They believe 

that the use of the qualitative theoretical representation will 

constitute the major difference between the expert and novice programs. 

Heller and Reif (1984) formulated a theoretical model that 
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specifies the knowledge and procedures necessary for human problem 

solvers to generate good initial representations (or "descriptions") of 

scientific problems. These representations describe problem statements 

in terms of specific concepts in the domain-specific knowledge base for 

mechanics problems. The subjects in their study to test the model were 

24 paid undergraduates enrolled in the second course of an introductory 

physics sequence at the University of California at Berkeley. The 

subjects had studied mechanics principles and solved,problems of the 

kinds used in the study. The subjects were randomly selected from those 

volunteers who finished their previous physics course with a grade of B-

or better. The subjects were randomly assigned to three groups of eight 

subjects each. The subjects solved three approximately matching pairs 

of physics text problems. The pairs of problems were divided into two 

approximately equivalent sets. Half of the subjects in each group 

completed one set as a pretest and the second set during the 

experimental treatment. The other half of the subjects completed these 

sets in the opposite order. 

The subjects were given a printed summary of the mechanics 

principles relevant to the problem sets, which they were asked to read 

and use for reference at any time. The pretest was completed without 

external guidance. The subjects then completed a practice session 

during which they solved mechanics problems under external control as 

verbal directions were read to the subjects. Each direction had to be 

performed by the subjects before listening to the next direction. 

The sub^asts in the first treatment group completed the problem set 



www.manaraa.com

50 

under external guidance that implemented the formulated model. The 

second treatment group solved the problems under external guidance that 

implemented an alternate model that approximately simulates the 

descriptive advice frequently found in physics texts and is less 

inclusive and explicit than the formulated theoretical model. The third 

experimental group constituted the control group and solved the problems 

without external guidance. 

According to Heller and Reif (1984), the performance of the 

subjects on the pretest and the performance of the control group 

indicated insufficient knowledge for solving the problems in an adequate 

fashion. Many students, in spite of having received good grades in a 

physics course in which they did formal work in mechanics, generated 

incomplete representations of the problems that led to incorrect 

solutions. The formulated model allowed the subjects to construct 

explicit and correct representations that markedly facilitated correct 

solutions. 

The work of Chi, Feltovich, and Glaser (1981) includes a series of 

studies that examines differences in representations of physics 

(mechanics) problems that are constructed by novices and experts. The 

guiding hypothesis is that: 

...the representation is constructed in the con­
text of the knowledge available for a particular 
type of problem. The knowledge useful for a par­
ticular problem is indexed when a given physics 
problem is categorized as a specific type 
(p. 122). 

The subjects in the first study were eight advanced Ph.D. students 

(experts) and eight undergraduates (novices) who had completed one 
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categories and their associated knowledge in the domain-specific 

knowledge base constitute the schemata that determine the quality of the 

representation process and subsequently infer that the problem schemata 

of novices and experts are different because their categorization 

processes are different. 

In the third study by Chi et al., assuming that the category 

descriptions generated by the subjects represent labels that are used to 

access particular schemata, a collection of 20 category labels was given 

to two experts and two novices. The subjects were asked to state 

everything they knew about problems involving the category labels. The 

results, depicted in Figures 10 and 11 in node-link form, show that 

surface (structural) features are shared by novice subjects (Figure 10) 

and expert subjects (Figure 11) but that the expert subjects possess 

principles and the conditions for their applicability as shown in the 

top of Figure 11. 

Two expert subjects and two novice subjects, different from the 

subjects in the second study, were given the set of counterbalanced 

problems used in the second study. The subjects were asked to think out 

loud about the "basic approaches" that they would use for solutions and 

were asked to state explicitly the "basic approaches" and the problem 

features that caused their choices. Analysis of the protocols showed 

that the expert subjects used the same terms for their "basic 

approaches" (major principles) as other experts did in the sorting 

tasks. The novice protocols were impossible to analyze as they lacked 

explicit statements and contained only very general statements. The 
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Incline Plane 
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Force 
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Friction , 

Coefficient 
Kinetic 

, Friction 

(Chi, Feltovitch, & Glaser, 1981) 

Figure 10. Novice schema associated with an inclined plane 
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Principles 

Mechanics 

Newton's 
Force Laws 

Conservation 
of Energy 
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Second Law 
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Forces 

Normal 

Forces 

Gravity Friction 

(Chi, Feltovitch, & Glaser, 1981) 

Figure 11. Expert schema associated with an inclined plane 
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semester of mechanics. The subjects were asked to categorize 24 

mechanics problems in any way they desired. The subjects also gave 

brief reasons (descriptions) for having chosen their respective 

categories. 

A cluster analysis revealed that the novices classified according 

to surface features, i.e., objects such as levers, springs, and pulleys; 

specific terms such as friction and force; spatial arrangement of the 

components of the problem statements, and that the experts classified 

according to deep structures, i.e., physics laws (for example, 

conservation of linear momentum) and concepts (for example, angular 

speed). 

The second study was done for the purpose of testing the findings 

from the first study. A set of 20 problems in which surface features 

and deep structures were counterbalanced, i.e., each problem contained 

one deep structure and one surface feature, were sorted. Chi et al. 

(1981) expected "that novices would group together problems that have 

the same surface structures, regardless of deep structure, and experts 

would group together those problems with similar deep structures, 

regardless of the surface structures. Individuals of intermediate 

competence should exhibit some characteristics of each." 

The results show that these expectations were realized and that 

advanced novices begin to use principles and laws rather than to rely 

only on surface features in their categorizations as the results of a 

novice, an advanced novice (a fourth-year undergraduate physics major), 

and two experts are reported. Chi et al. (1981) believe that the 
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expert protocols included descriptions of the problem states and 

conditions of the physical situations described by the problems. Some 

of these were transformed or derived such as "no external forces," 

called "second-order" features as they do not appear in literal form in 

the problem statements» Chi et al. (1981) believe that literal parts of 

the problem statements are changed into "second-order" features that 

activate category schemata for certain problem types. These schemata 

are organized by physics laws and direct the completion of the problem 

representations and initiate mathematical solutions. Expert subjects in 

a fourth study were seen to make qualitative analysis prior to working 

with equations, a behavior also observed in the studies by Simon and 

Simon (1978) and Larkin (1980). 

The categorization process seems to be a promising technique for 

the study of representation of physics problems that allows for 

inference of schemata that exist in the domain-specific knowledge base. 
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CHAPTER III. METHODOLOGY 

Description of Subjects and Tasks 

The total novice sample consists of 94 students in Physics 221, 

Introduction to Classical Physics (spring term of 1985-1986), at Iowa 

State University. The students had completed the mechanics portion of 

that course at the time of task engagement. The students had not used a 

version of Fundamentals of Physics, the text from which the problems 

in Problem Set 1 and some of the problems in the other three problem 

sets were selected. The sample was categorized according to ACT science 

scores: Group 1 - ACT less than or equal to 27, Group 2 - ACT greater 

than or equal to 28 but less than or equal to 32, and Group 3 - ACT 

greater than or equal to 33. These groups are used in the post-hoc 

analysis investigating possible differences among novices with respect 

to the outcomes of the sorting tasks. The range of each group reflects 

the division of the subjects into a group that might be expected to 

include relatively poorer problem solvers, a middle group, and a group 

that might be expected to include the relatively better problem solvers. 

The assignment of the subjects in each group to one of four problem sets 

was random. 

The intermediate (I) sample consists of five students who had 

completed Physics 361, Classical Mechanics, at Iowa State University 

(the 1985-1986 academic year) prior to the time of task completion. 

This sample is involved only with Task 3, used in the testing of the 

third hypothesis. 



www.manaraa.com

57 

The total expert sample consists of 20 physicists who hold the 

Ph.D. degree in physics. All but two of these have taught an 

introductory course in calculus-based physics. Fourteen of the total 

sample have such a course as a part of their usual teaching load and 16 

have used a version of Fundamentals of Physics. The average number of 

years of experience in teaching courses such as Physics 221 approximates 

12 years. Five experts, as they became available, were assigned to each 

problem set. 

Four problem sets were used. Each problem in each set is stated 

completely and is cited in a separate appendix, rioblem References A, 

B, C, and D, respectively, contain Problem Sets 1, 2, 3, and 4. Each 

problem was typed on a 5-inch x 8-inch card. Each task consisted of a. 

sorting a problem set and b. solving one of the sorted problems. There 

was no overlapping of subjects. Each subject sorted only one problem 

set and solved only one problem in that sorted set. Figure 12 shows the 

relationships among tasks, hypotheses, and problem sets. The numbers of 

subjects assigned to each task are also included. 

The directions that were given to the subjects are; 

Please read all of the directions before beginning 

the tasks. 

You have been given a set of problems (a stack 
of notecards) bound with a rubber band. 

Task A - Please sort these problems according to 
any similarities (or patterns of similarities) 
that you perceive among them. After removing the 

rubber band, sort the problems by making one 
subset (a smaller stack) of problems based on 
each similarity (or pattern of similarities) 
that you perceive. Each smaller stack may consist 
of any number of cards. After you have finished 
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TASK HYPO PROBLEM NUMBER NOVICE EXPERT INTER- N 
THESIS SET OF SUBJECTS SUBJECTS MEDIATE 

PROS- SUBJECTS 
LEMS 

IN 

SET 

1 1 1 24 28 5 0 33 

2 2 2 24 20 5 0 25 

3 3 3 16 23 5 5 33 

4 4E 4 16 23 5 0 28 

4N 

94 20 5 119 

Figure 12. Table: Summary of tasks, hypotheses, problem sets, and 
subjects 
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the sorting process and have a number of smaller 
stacks in front of you, take a blank notecard 
from the table and place one such blank notecard 

on top of each of the smaller stacks. On each of 

these cards write a COMPLETE explanation for having 
placed (sorted) the problems in that particular 

subset. Please be very complete and explicit. 
Simple sketches or diagrams used to add to your 
written statements are valuable. You are encou­
raged to use such sketches or diagrams. When 
finished, place a rubber band around each stack. 
Then place all your stacks on top of each other, 
add the card with your name to the top of the 
stack and bind with two criss-crossing rubber 
bands. 

Task B - At the bottom of your problem set is a 
stapled, folded sheet. Please do not remove 

the staple until you have finished Task A total­
ly. After removing the staple, solve the problem, 
writing all steps and jotting down related 

thoughts in a very complete mannner. Cross out 
errors and otherwise make changes in a manner 
allowing all your writing to remain visible. 

When finished, please give the bound stack of 
cards and the separate solution to me. 

It was made clear to the subjects that the subsets might be altered 

any number of times as Task A was being completed. 

Collectively, the numbers on the cards (numbers of the problems) in 

each sorted subset determine the composition of the categories. The 

written rationales on the cover cards of the subsets determine the 

labels of the categories. Comments such as "deal mainly and almost 

entirely with friction" and "had to know the conservation of momentum 

law to find velocity" were retained and collated. Comments such as "I 

don't know how to solve this" and "looks difficult" were excluded. 

The problem sets are now described as related to the hypotheses. 

Hypothesis 1 - Experts will categorize physics (mechanics) problems 
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on basis of deep structures and novices will categorize these problems 

on basis of surface features» 

The work on Hypothesis 1 is designed to replicate part of the 

findings of the Chi et al. study (as stated by this hypothesis) and, 

simultaneously, is used to validate the dendogram methodology. 

Problem Set 1 consists of 24 mechanics problems selected from 

Chapter 5 through 8 in Fundamentals of Physics by Halliday and Resnick 

(1974). Twenty-two of these problems are identical to 22 problems in a 

24-problem set used by Chi et al. (1981). 

The novice sample consists of 28 Physics 221 students and the 

expert sample includes five Ph.D. physicists. 

Hypothesis 2 - Experts will categorize a different set of physics 

(mechanics) problems on basis of deep structures and novices will 

categorize this set on basis of surface features. 

The purpose of Hypothesis 2 is to attempt a degree of 

generalization for the results of the testing of Hypothesis 1, i.e., to 

determine whether the Hypothesis 1 effects also exist for a different 

problem set. 

Problem Set 2 consists of 24 mechanics problems selected from 

physics texts of a level similar to that of Fundamentals of Physics. 

A few of these 24 problems are selected from Fundamentals of Physics. 

The novice sample consists of 20 Physics 221 students and the 

expert sample includes 5 Ph.D. physicists. 

Hypothesis 3 - Experts will categorize physics (mechanics) problems 

according to deep structures regardless of surface features and novices 
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will categorize these problems according to surface features regardless 

of deep structures. Intermediates will reveal a categorizing pattern 

that is characterized by a mixture of deep structures and surface 

features» 

Problem Set 3 is of basic importance to this study. The results of 

Task 3 attained by the expert subjects serve as the basis of comparisons 

among other results as explained in the section entitled Treatment of 

Data. 

Problem Set 3 consists of 16 mechanics problems in which each 

problem contains one surface feature and one deep structure. The four 

deep structures (D) in the set are Newton's Second Law (Dl), 

Conservation of Energy (D2), Conservation of.Linear Momentum (D3), and 

Conservation of Angular Momentum (D4). The four surface features (S) 

are the Spring, (SI), the Inclined Plane (S2), the Pulley (S3), and 

Terms (S4). Terms (S4) includes physical arrangements of objects and 

literal physics terms in text of the problems. The problem set may be 

shown in matrix form: 

Dl D2 D3 B4 

Sl| SlDl S1D2 S1D3 S1D4 

S2| S2D1 S2D2 S2D3 S2D4 
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S3D3 S3D4 

S4| S4D1 S4D2 S4D3 S4D4 

Clearly, the set contains four deep structures and four surface 

features. 

Problem 3.2, the second problem in Problem Set 3 (Appendix C), 

serves as a specific example: 

The force required to compress a horizontal spring 
an amount x is given by F = ax + b(x to the 3rd 

power) where a and b are constants. If the spring 

is compressed an amount 1, what speed will it give 
to a ball of mass M held against it and released? 

(Giancoli, 1984, p. 113). 

The surface feature is the Spring (SI) and the deep structure is the 

Conservation of Energy (D2). The problem is then designated as S1D2 in 

the matrix. 

The novice sample consists of 23 Physics 221 students, the 

intermediate sample consists of five students who had completed Physics 

361, and the expert sample includes five Ph.D. physicists. 

Hypotheses 4E and 4N are considered together. 

Hypothesis 4E - Experts will categorize a set of physics 

(mechanics) problems according to deep structures regardless of surface 

features with the number of established categories approximately equal 

to the number of deep structures contained in the set. 

Hypothesis 4N - Novices will categorize a set of physics 

(mechanics) problems according to surface features regardless of deep 

structures with the number of established categories approximately equal 
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to the number of surface features contained in the set. 

Problem Set 4, used for testing Hypotheses 4E and 4N, consists of 

16 mechanics problems in which each problem contains one deep structure 

and one surface feature (Task 4). The two deep structures (D) in the 

set are Newton's Second Law (Dl) and conservation of energy (D2). The 

two surface features in the set are the spring (Si) and the inclined 

plane (S2). Part of the problem set is shown in matrix form: 

Dl D2 

SI I SlDl S1D2 

321 S2D1 S2D2 

This matrix includes four problems. The entire set contains four such 

subsets of four problems. Clearly, the entire set, having 16 problems, 

contains two different deep structures and two surface features. 

The novice sample consists of 23 Physics 221 students and the 

expert sample includes five Ph.D. physicists. 

Information for Post Hoc Analysis 

In an effort to glean information concerning possible differences 

in categorization of mechanics problems among novices, the final grades 

in Physics 221, the ACT science scores, and the high school class ranks 
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of the novices were obtained. This study, while concentrating on 

expert-novice differences, also explores some speculative questions 

dealing with differences among novices such as "Is there a relationship 

between higher ACT scores and a categorization pattern that includes 

more 'expert-like' features than a 'typical novice-like' pattern?" and 

"Is there a relationship between 'expert-like' features and higher 

physics course grades?" 

Treatment of Data 

The study utilized cluster analysis (Euclidean distance) as the 

tool for the analysis of the data. 

Suppose that eight subjects categorize eight mechanics problems. 

The categorization process yields results as shown in Figure 13A. 

Cluster analysis is a process that allows for the arrangement of 

objects, physics problems in this case, into subsets or clusters. The 

problems within a cluster are more homogeneous than they would be if 

they were compared to problems that belong to other clusters. Consider 

Problem 1 and Problem 2 in Figure 13A. Notice that these two problems 

differ in the numbers of subjects who categorized them as belonging to 

the categories: 

Second Law, Energy Principles, Momentum Principles, and Conservation of 

Angular Momentum. It is easy to visualize the distance between Problem 

1 and Problem 2 if only the first three categories - Second Law, Energy 

Principles, and Momentum Principles - are considered. Figure 13B 

clearly shows that Problem 1 can be represented by the coordinates 
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Problems 1 2 3 4 5 6 7 8 

Second Law 2 1 0 4 3 2 2 I 

Energy 
Princ. 4 2 0 4 3 0 2 0 

Moment. 
Princ. 1 5 0 0 1 0 2 0 

Angular 
Motion 0 0 1 0 0 0 0 0 

Circular 
Motion 0 0 2 0 0 0 0 5 

Center 
of Mass 0 0 0 0 0 0 0 0 

Linear 
Kinem. 0 0 0 0 0 0 0 0 

Cons. of 
Ang. Mom» 1 Q 5 0 1 0 2 2 

Number of 
Subjects 8 8 8 8 8 8 8 8 

Figure 13A. Data matrix 
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Energy Principles 

Problem 1 
(2,4,1) 

Problem 2 
(1,2,5) 

Momentum Principles 

Figure 13 B. Representation of two mechanics problems 
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(2,4,1) in a three-dimensional space bound by the three categories. 

Similarly, the coordinates (1,2,5) fix Problem 2. The Euclidean 

distance between the two problems is then calculated: d(l,2) = root of 

{(2 - 1) squared + (4 - 2) squared + (1 - 5) squared} = 4.58. When 

problems differ across four or more categories, it is difficult or 

impossible to visualize the relative distances of the points, each of 

which represents a problem, in space that exceeds three dimensions. The 

process may be formalized. According to Hinz (1973): 

Although distances in these higher dimensions are 
impossible to visualize geometrically, they are 
easily calculated for any two objects. If the ii 
measurements for object _i are given in the n x 1 
vector X(i), then the distance from object to 

object 2 » d(ij), is calculated as 

d(ij) = root of {(X(i) - X(j)}'{X(i) - X(j)}. 

This calculation is very simple and can be per­
formed for all possible pairs of objects. The dis­

tances can then be arranged in what is known as an 

association matrix (p. 113). 

The above formula is used to accomplish a transposition of a data 

matrix, such as shown in Figure 13A, to an association matrix. Figure 

14 illustrates this use of the formula in detail for a few examples. 

Ifhen all four categories are considered, the Euclidean distance between 

Problem 1 and Problem 2 is calculated as shown in Figure 14. Similarly, 

all possible distances between Problem 1 and the other problems, between 

Problem 2 and the other problems, etc. are calculated. These distances 

then are arranged in an association matrix, M 1, as shown in Figure 15. 

Notice that the distance between Problem 1 and Problem 5, 1.41, is the 

shortest distance between any two problems (single linkage cluster 
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(X^ - X ) 

= ] (S^ - X (X. - Xj) 

2 1 1" 

4 2 2 

1 5 -4 

1 0 
—

—
1
 

J
 

( S , - x y ( s ^ - x . ) [  ̂ 2 - 4  1 ]  1 

2 

-4 

1 

(X^ - Xj)'(Xi - Xj) = (1)(1) + (2)(2) + (-4)(-4) + (1)(1) 

(X^ - Xj)'(X^ - Xj) = 1 + 4 + 16 + 1 

(Xi - Xj)'(X^ - Xj) =J22 

*^1,2 = 22 4.69 

= 6 «48 Similarly, = )(2-0)^ + (4-0^ + (1-0)^ + (0-2)^ (1-5) 

il^8 = 4(2-1)^ + (4-0)2 + (1-0)2 + (0-5)2 + (1-2)2 ̂  *1, 

Then, 62,3 = 7.75 

7.62 

63 

d2,8 

etc. 

(Adapted from Hinz, 1973) 

Figure 14. Calculation of distances between problems 
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Association Matrix, Ml 

1 2 3 4 5 6 7 8 

1 0 

2 4.69 0 

3 6.48 7.75 0 

4 4.24 6.16 7.87 0 

5 1.41 4.69 6.32 2.00 0 

6 6.16 6.78 7.35 6.32 5.66 0 

7 2.45 3.74 5.10 4.00 2.00 5 . 66 0 

8 , 6.63 7.62 4.47 7.35 6.32 7 .07 5.83 0 

Association Matrix, M2 

1+5 2 3 4 6 7 8 

1+5 0 

2 4.69 0 

3 6.32 7.75 0 

4 2.00 6.16 7.87 0 

6 5.66 6.78 7.35 6.32 0 

7 2.00 3.74 5.10 4.00 5.66 0 

8 6.32 7.62 4.47 7.35 7.07 5.83 0 

G/ (ï) 
4.2 uu 

-1.41-

5 5. ay 0) 
6.16 5,66 

-1.41-

GT 0 
2.45 2.00 

.41-

6.63 6.32 

GT © 
»—1.41-

Figure 15. Reduction of an association matrix 
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M3 M6 

1+5 
+4 2 

M4 

1+5+ 

4+7 

1+5+4 
+7+2 3+8 

1+5+4 0 1+5+4+7+2 0 

2 4.69 0 3+8 5.10 0 

3 6.32 7.75 0 6 5.66 7.07 

6 5.66 6.78 7.35 0 

7 
Isss 

3.74 5.10 5.66 0 

8 6.32 7.62 4.47 7.07 5.83 0 

1+5+4+7 0 

2 

3 

6 

8 

8 

3.74 0 

5.10 7.75 0 

5.66 6.78 7.35 0 

5.83 7.62 4.47 7.07 0 

M7 

1+5+4+7+2 

3+8 

1+5+4 
+7+2 
3+8 

0 5.66 

5.66 0 

1+5+4 
+7+2 

3 

6 

8 

1+5+4 
+7+2 3 8 

G 

5.10 0 

5.66 7.35 0 

5.83 4.47 7.07 0 

Figure 16. Further reduction of association matrices 
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analysis) as obtained by quantitative inspection of M 1. Problems 1 and 

5 are then clustered. Figure 16 shows the further reduction of each 

association matrix and the concomitant clustering. The process ends 

with the formation of a 2 x 2 matrix. 

Association matrices may contain a quantity of information that 

precludes easy interpretation. The information within matrices may be 

transformed into dendograms (dendographs). Hinz (1973) holds that the 

dendogram can be treated as a statistic and, in a sense, summarizes the 

information in a data matrix such as the one shown in Figure 13A. The 

objects, physics problems in this case, are represented as equidistant 

points along an abscissa (see Figure 17). The measure of similarity is 

plotted along the ordinate; in this case the measure of similarity is 

the distance between problems belonging to different categories. 

Vertical lines are drawn from points 1 and 5. A horizontal line at the 

height of 1.41, the distance between problems 1 and 5, connects the 

vertical lines. The distance between the 1,5 cluster and Problem 4 is 

2.00 as shown in M 2 in Figure 15. Vertical lines are drawn from the 

1,5 cluster and Problem 4 and joined by a horizontal line at an ordinate 

of 2oOQ= Continuation of this process yields the dendogram shown in 

Figure 17. 

Problems in the dendogram with greatest, similarity are connected at 

lower ordinal values. Clusters that do not overlap may be obtained by 

choosing a level of dissimilarity (Hinz, 1973). A horizontal line drawn 

at 2.50 would result in 5 subsets: (1, 5, 4, 7), 2, 3, 8, and 6 while 

such a line drawn at 5.00 would yield 3 subsets: (1, 5, 4, 7, 2), (3, 
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7.00 

6.50 

6.00 

5.50-

5.00 

4.50 

4.00 

3.50 

3.00 

2.50 

2.00 
1.50 

1.00 

0.50 

Figure 17. Dendogram derived from association matrices 
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8), and 6. 

The CLUSTER procedure (SAS, 1985) was used. The computer outputs 

include dendograms in which the minimal distances between clusters 

(ordinal values), as explained in the expository example above, have 

been calculated as normalized values, thus making comparisons among 

different task results possible. 

Each problem is described by 17 variables (four expert categories, 

12 novice categories, and one No Category). One subject categorizing 

one problem constitutes one category use. When the rationale card for a 

subset includes two categories, one half category use is entered under 

each category. There are 2368 possible category uses (33, 25, 33, and 

28 subjects sorting the task sets of 24, 24, 16, and 16 problems, 

respectively). The input for the cluster-analysis process for each 

problem is a data line that consists of the number of category uses for 

each of the 17 variables. 

Categories used extensively and labeled by the expert subjects are 

Newton's Second Law (FMA), Conservation of Energy (CE), Conservation of 

Linear Momentum (CLM), and Conservation of Angular îfomentum (CAM). The 

four categories associated with these labels are considered to be expert 

categories as they contain 92 % of the category uses made by the expert 

subjects. 

Twelve other categories are Angular Motion (AMOT), Center of Mass 

(COM), Frames of Reference (FRM), Springs (SP), Inclined Plane (PL), 

Pulleys (PUL), Terms (TM), Friction (FR), Atwood Machine (ATW), 

Kinematics (KIN), Energy (E), and Vectors (VEC). Terms (TM) includes 
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physical arrangements of objects and literal physics terms that are 

included in the sorted problems. These categories contain only 5 % of 

the category uses made by the expert subjects. Subsequently, these 12 

categories constitute the novice categories in this study. 

No Category (NO) is the 17th category which includes 3 % of the 

category uses made by the expert subjects. 

A criterion for cluster labeling allows for meaningful 

interpretation of the data: The label of a cluster is a function of the 

categories imposed on the problems in that cluster by at least 75 % of 

the subjects who have sorted the problem set of which the cluster is a 

part. The use of a 75 % subject participation in the cluster-labeling 

process, although arbitrary, allows for inclusion of two or three 

categories (four categories in case of a tie between the third and 

fourth category) most frequently used by subjects. Labels used 

relatively infrequently are thus eliminated. 

When combinations of labels associated with a cluster occur, the 

label used by the greater percentage of subjects who sorted the problem 

set of which the cluster is a part becomes the label of the cluster. 

The clusters resulting from the sorting by the expert subjects may 

contain more than one expert category. Illustratively, Figure 18 

includes an expert category labeled FMA (Newton's Second Law) with an 

accompanying indication of 81 %. This is a cluster in which 81 % of the 

subjects encompassed by the cluster-labeling criterion viewed the 

cluster to consist of Newton's Second Law problems while 19 % per cent 

of those subjects judged these problems to belong to one or two expert 
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Figure 18. Expert dendogram 

Legend; CLM = Conservation of Linear Momentum 
FMA = Newton's Second Law 
CE = Conservation of Energy 
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categories which are not included in the Newton's Second Law label. 

The clusters resulting from the sorting by the novice and 

intermediate subjects may also contain more than one category. The 

sorting process by these subjects resulted in both expert and novice 

clusters (as opposed to the sorting process by the expert subjects which 

resulted in only expert clusters). Illustratively, Figure 19 shows a 

novice dendogram that includes an expert cluster labeled FMA (Newton's 

Second Law) with an accompanying indication of 73 %. It is a cluster in 

which 73 % of those subjects encompassed by the cluster-labeling 

criterion view the problems in the cluster as belonging to the Newton's 

Second Law category, expert category, while 27 % categorized these 

problems as belonging to one or more novice categories. On the other 

hand, also in Figure 19, a novice category labeled SP (Springs) with an 

accompanying indication of 88 % is a novice cluster in which 88 % of the 

subjects encompassed by the cluster-labeling criterion have categorized 

the problems in the cluster as belonging to the Springs cluster, novice 

category, while 12 % of the subjects categorized these problems as 

belonging to one or more expert categories= The novice and 

intermediate dendograms include expert clusters which are shaded with 

slanting lines and novice clusters which are shaded with horizontal 

lines. 

Various interpretations can result from dendograms. A criterion 

for inclusion of clusters in the testing of hypotheses is used in this 

study: A cluster is identified as a hypothesis-testing cluster when it, 

in its entirety, exists below the ordinal value (minimal distance 
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0.535 

0.551 

Minimum .6 
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Between f 

Clusters \ 

1 8 15 3 11 5 13 14 6 10 7 12 2 16 4 9 
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0 A A M 
T 
60% 58l 331 •m 40% 881 

Problems 

Figure 19. Novice dendogram 

Legend: AMOT = Angular Motion 
FRjPL = Friction and Inclined Plane 
FMA. = Newton's Second Law 
CE,CLM = Conservation of Energy and 

Conservation of Linear Momentum 
S? = Springs 
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between clusters) of 0.535 in the dendograms. 

The 0.535 value was selected because it allows for the 

identification of the four expert categories (deep structures) built 

into the third problem set. The expert subjects who sorted this set 

(Task 3) categorized the problems in a way that, at the 0.535 value, 

yields the same four categories with the same labels as those that were 

built into the set. The built-in categories were validated by two 

university physicists who solved and categorized each problem in the 

set. The results attained by the expert subjects assigned to this set, 

which are the same as those attained by the two validating physicists, 

are the basis for comparisons among the task results. Clearly, 

different ordinal values would reveal different sets of clusters. The 

0.535 value is applied to all dendograms in the study and serves as a 

reference line. A dendogram may be considered a statistic but, 

according to Hinz (1973): 

...attempts to include probabilistic elements 
into cluster analysis methods have largely been 
unsuccessful. Thus confidence intervals, tests 

of significance, maximum likelihood estimation, 
etc. are features common to statistical method­
ology but are generally not available in 
cluster analysis. 

Despite the obvious lack of theoretical basis, 
cluster analysis techniques have proven to be 
successful in a wide variety of data analysis 
situations (p. 121). 

In the absence of statistical tests, a dendogram must be 

interpreted from a well-defined perspective. The testing of the 

hypotheses ir this study is accomplished within the limitations imposed 

by the two criteria: At least 75 % of the subjects participate in the 
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At least 75 % of the subjects participate in the cluster-labeling 

process and only those clusters below the 0.535 reference line are 

included as hypotheses are tested. 

A detailed example of the cluster-labeling process simplifies the 

next chapter in which the results are discussed. 

The novice dendogram in Figure 19, the results of Task 3 

accomplished by the novice subjects assigned to Problem Set 3, includes 

six clusters below the 0.535 reference line. Three of these clusters 

are expert clusters (slanted shading) and three are novice clusters 

(horizontal shading). The cluster composed of problems 1, 8, and 15 is 

labeled AMOT (Angular Motion). This particular cluster is used 

illustratively in a detailed explanation of the application of both 

criteria to novice results. With 23 novice subjects categorizing three 

problems, the total number of category uses is 69. The data lines for 

these problems are given below, marked with the labels FMA (Newton's 

Second Law), CE (Conservation of Energy), CLM (Conservation of Linear 

Momentum), CAM (Conservation of Angular Momentum), AMOT (Angular 

Motion), COM (Center of Mass), FSM (Frames of Reference), SF (Springs), 

PL (Pulleys), TM (Terms), FR (Friction), ATW (Atwood Machine), KIN 

(Kinematics), E (Energy), VEC (Vectors), and NO (No Category). The 

first, second, third, and fourth data lines, respectively, contain the 

category uses for Problems 1, 8, 15, and the total category uses for 

these three problems. 
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FMA CE CLM CAM AMOT COM FRM SP PL PUL TM FR ATW KIN E VEC NO 

0 4 0 4.5 7 0 0 0 0 0 3.5 0 0 0 0 0 4 

.5 1 .5 4.5 13.5 0 1 0 0 2 0 0 0 0 0 0 0 

.5 1.5 0 5.5 11.5 0 0 0 1 0 1 0 0 0 0 0 2 

1 6.5 .5 14.5 32.0 0 1 0 1 2 4.5 0 0 0 0 0 6 

The criterion of cluster labeling is met as 53 responses are considered 

in the labeling determination (53/69 x 100 % = 77 %). The ratio AMOT 

(Angular Motion, a novice category) : CE (Conservation of Energy, an 

expert category) and CAM (Conservation of Angular Momentum, an expert 

category) = 32.0 ; (6.5 +14.5) = 1.5 : 1.0. This cluster ratio 

determines the label and relative composition of the cluster: AMOT 

(Angular Motion) is a novice cluster that includes 60 % novice 

categorical content and 40 % expert categorical content. It is shaded 

with horizontal lines in the dendogram. 

The cluster composed of Problems 5 and 13 is labeled FMA (Newton's 

Second Law). It is an expert cluster that contains 55 % expert 

categorical content and 45 % novice categorical content. It is shaded 

with slanting lines in the dendogram. 

Figure 19 contains the labeled clusters, with their respective 

percentages indicating the dominant categorical content, AMOT (Angular 

Motion), FR and PL (Friction and Inclined Plane), FMA (Newton's Second 

Law), FMA (Newton's Second Law), CE and CLM (Conservation of Energy and 
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Conservation of Linear Momentum), and SP (Springs). There are two 

Second Law clusters: They share the same dominant expert content but 

differ in novice content. The first Second Law cluster includes 55 % 

expert categorical content and 45 % novice categorical content and the 

other cluster has 73 % expert categorical content and 27 % novice 

categorical content. 

The expert dendogram in Figure 20 also includes the cluster 

composed of Problems 1, 8, and 15. The experts labeled this set of 

three problems CAM (Conservation of Angular Momentum). This resulting 

label emerges from the data on which the cluster is based. As this is 

an expert dendogram, the 86 % indication means that the dominant expert 

categorical content constitutes 86 % and the expert content not used in 

the determination of the label accounts for 14 % of the total number of 

category uses allowed by the cluster-labeling criterion. 

Description of Design and Post Hoc Treatment of Data 

A dependent variable, DEGREE, was designed for investigating 

possible relationships between "expert-like" behavior by the novices and 

ACT science scores, the final grades in Physics 221, and the percentile 

ranks in the high school class. 

The expert subjects demonstrated a good match between choice of 

category and solution in terms of that category; 87.5 % of them showed a 

perfect match. 

Each subject in this study solved one of the problems in the 

particular problem set which he/she sorted. Each solved problem was 
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checked against the category imposed on the problem. 

The value of DEGREE is obtained according to the model: 

A. Does the solution fit the 

imposed category? 

yes = 1.0 

partly = 0.5 

no =0 

B. Is the imposed category 

an "expert" category 

and does this category 

lead to a correct solution? 

yes (and correct solution) = 1.0 

yes (but incorrect solution) = 0.5 

no =0 

The score on the DEGREE variable = DEGREE = Score A + Score B. 

The results of the imposed category/solution matches by the expert 

subjects in this study were noted and expressed numerically. 

The independent variables and their levels are: 

ACT science score 

greater than or equal to 33 .... 3 

less than or equal to 32 to 

greater than or equal to 28 .... 2 

less than or equal to 27 .... 1 

Final grade in Physics 221 

(scale: A = 11, B+ = 10 ... 
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D- = 1, F = 0) 

7 - 11 3 

4 - 6 2 

0 - 3  1  

High school class rank (expressed as 

a percentile) 

Upper third of novice sample ....3 

Middle third of novice sample ...2 

Lower third of novice sample ....1 

The research question, addressed by the post hoc analysis, is: 

"Are there differences in average DEGREE scores attributable to the ACT 

science score, the final grade in Physics 221, and the high school class 

rank?" The accompanying null hypotheses were tested: 

H0(1). There are no significant differences in average 

DEGREE scores among the students when cate­

gorized on the basis of the ACT science score, 

the final grade in Physics 221, and the high 

school class rank. 

•R0(2). There is no significant interaction in average 

DEGREE scores among the students when cate­

gorized on the basis of the ACT science score, 

the final grade in Physics 221, and the high 

school class rank. 

The corresponding alternative hypotheses are: 

HA(1). There are significant differences in average 
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DEGREE scores among the students when cate­

gorized on the basis of the ACT science score, 

the final grade in Physics 221, and the high 

school class rank. 

HA.(2). There is significant interaction in average 

DEGREE scores among the students when cate­

gorized on the basis of the ACT science score, 

the final grade in Physics 221, and the high 

school class rank. 

A Pearson correlation between the DEGREE scores and the final 

grades in Physics 221 was calculated. 
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CHAPTER IV. RESULTS 

The rationale cards indicate that 95 % of the subjects viewed the 

sorting tasks from a problem-solving perspective, i.e., the problems 

were categorized on the basis of perceived solutions to the problems as 

if they were to be solved. Comments such as "The solution is made 

easier by ..." and "All of these can be solved by F = ma" are 

illustrative. 

Expert clusters in the dendograms are associated with deep 

structures (experts are expected to categorize on basis of deep 

structures) and novice clusters are associated with surface features 

(novices are expected to categorize on basis of surface features). 

Results - Hypothesis 1 

Experts will categorize physics (mechanics) problems on basis of 

deep structures and novices will categorize these problems on basis of 

surface features. 

Chi et al. used comparisons among problems with the greatest 

measure of agreement and frequency distributions of the number of times 

the problems in a set were placed in a given category. They were able 

to accept the hypothesis. 

Chi et al. (1981) state that: 
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One way to interpret the cluster analysis is to 
examine only those problems that were grouped 
together with the highest degree of agreement among 
subjects (p. 124). 

The initial analysis in the Chi et al. study focused on pairs of 

problems. One pair contains rotating things and was grouped together by 

all eight novices vrtio sorted the set. Figure 21, containing the novice 

results of Task 1, shows the AMOT (Angular Motion) cluster to contain 

Problems 2 and 13 (both deal with rotating things). Problem 2 is 

identical to one of the two Chi et al. problems and Problem 3 is similar 

to the other in that both deal with wheels on shafts with a given 

angular velocity. The sorting outcomes in both studies are similar. 

Such a comparison between studies can be made but is complicated by the 

use of problems that, occasionally, are not identical. 

Eight novice subjects participated in the Chi et al. study while 

this study includes data from 94 novice subjects. This study uses the 

hypothesis-testing clusters in each entire dendogram. The use of entire 

dendograms allows for greater inclusion of data in a clear, 

demonstrative manner. Individual problems are considered in the 

analysis of the data resulting from the third problem set (Task 3) and 

the fourth problem set (Task 4) as these problem sets have identifiable 

a priori structures. 

The expert dendogram in Figure 22, showing results of Task 1, 

contains no novice clusters and three expert clusters and supports the 

hypothesis; Experts categorize the problems on the basis of deep 

structures. 

The novice dendogram in Figure 21 includes six novice clusters and 
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Figure 21. Novice dendogram - Results of Task 1 
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Figure 22. Expert dendogram - Results of Task 1 

Legend: CLM = Conservation of Linear Momentum 
FMA = Newton's Second Law 
CE = Conservation of Energy 
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one expert cluster and supports the hypothesis: Novices categorize the 

problems on the basis of surface features. 

The analysis of pairs of problems and the use of frequency 

distributions of the number of times the problems were placed in a given 

% 

category by Chi et al. and the cluster analysis with the resulting 

dendograms in this study both allow for the acceptance of Hypothesis 1: 

The dendograms constitute a valid method of analysis and the Chi et al. 

results are confirmed in the replicatlve testing of Hypothesis 1. 

Results - Hypothesis 2 

Experts will categorize a different set of physics (mechanics) 

problems on basis of deep structures and novices will categorize this 

set on basis of surface features. 

The expert dendogram in Figure 23, showing results of Task 2, 

contains no novice clusters and three expert clusters and supports the 

hypothesis: Experts categorize the problems on the basis of deep 

structures. 

The novice dendogram in Figure 24, showing results of Task 2, 

contains three novice clusters and two expert clusters. With ten 

problems in the two expert clusters (by comparison, the results of Task 

1 shown in Figure 21 Include three problems in its single expert 

cluster)5 the dendogram does not support the hypothesis. 
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Legend: FMA = Newton's Second Law 
AMOT = Angular Motion 
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Results - Hypothesis 3 

Experts will categorize physics problems (mechanics) problems 

according to deep structures regardless of surface features and novices 

will categorize these problems according to surface features regardless 

of deep structures. Intermediates will reveal a categorizing pattern 

that is characterized by a mixture of deep structures and surface 

features. 

The expert dendogram in Figure 25 shows results of Task 3. This is 

the set with four deep structures and four surface features. Each 

problem contains one deep structure that is counterbalanced with one 

surface feature. 

The expert subjects labeled the problems with a clustering pattern 

that reflects the built-in deep structures with some exceptions. The a 

priori categories (as based on the construction and validation of the 

set) as compared to the resulting clusters labeled by the subjects are: 

Conservation of Angular Momentum (1, 8, 9, 15 vs. 1, 8, 15), 

Conservation of Energy (2, 6, 10, 14 vs. 2, 6, 10, 14, 3, 9), 

Conservation of Linear Momentum (4, 7, 12, 13 vs. 4, 7, 12), and 

Newton's Second Law (3, 5, 11, 16 vs. 5, 11, 16). Problem 9 is a 

two-step problem, CE (Conservation of Energy) and CAM (Conservation of 

Angular Momentum), and its place in the CE (Conservation of Energy) 

cluster may be considered to satisfy the a priori-based expectation. 

Thus, with the exception of Problems 3 and 13, the subjects labeled the 

problems according to the a priori-based scheme. 

The results of the Task 3 support the hypothesis: Experts 
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categorize physics problems according to deep structures regardless of 

surface features. 

The novice dendogram in Figure 26, showing results of Task 3, with 

three novice clusters and three expert clusters, includes more 

divergence from the a priori clusters (as based on the construction of 

the set) than does the expert dendogram. 

A few representative cases are discussed. The clusters labeled by 

the subjects show only the SP (Springs) cluster having a perfect match 

(2, 4, 9, 16 compared with 2, 16, 4, 9). Two expert clusters, the first 

FMA (Newton's Second Law) cluster and the CE, CLM (Conservation of 

Energy and Conservation of Linear Momentum) cluster include Problems 5, 

7, and 12. These problems are, respectively, in the PUL (Pulleys), TM 

(Terms), and PL (Inclined Plane) categories (novice categories) in the a 

priori structure. The FR, PL (Friction and Inclined Plane) cluster, a 

novice cluster, in the dendogram contains only Problem 11 of the priori 

PL (Inclined Plane) category which includes Problems 6, 11, 12, and 15. 

Problems 6 and 12 are, respectively, in two expert clusters, the second 

FMA. (Newton's Second Law) and the CE, CLM (Conservation of Energy and 

Conservation of Linear Momentum) clusters. Problem 15 is in the novice 

AMOT (Angular Motion) cluster. The novice subjects chose some expert 

labels for problems that contain specific surface features and assigned 

some novice labels to problems that contain surface features other than 

those indicated by the assigned labels. 

The existence of three expert categories and the divergence from 

the a priori structure in the novice dendogram do not support the 



www.manaraa.com

96 

Minimum 
Distance 
Between 

Clusters 

0.551-

0.535 

00 

15 3 11 
FP 

5 13 
F 

14 6 10 
F 

7 12 
CO 

n IUJ ri I'i EL 
0 A A M 
T 
60% 58% 55% 73% 40% 

S 
F 

88% 

Figure 26. Novice dendogram - Results of Task 3 
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hypothesis. 

The intermediate dendogram in Figure 27, showing results of Task 3, 

with one novice cluster and three expert clusters, resembles the expert 

dendogram in Figure 25 in that both dendograms consist largely of expert 

clusters (one novice cluster in the intermediate dendogram). Problems 

I, 8, and 15, GAM (Conservation of Angular Momentum), in the 

intermediate dendogram were clustered and labeled as was done by the 

experts. The intermediates clustered and labeled Problems 2 and 9, in 

the CE, CAM (Conservation of Energy and Conservation of Angular 

Momentum) cluster, approximately as was done by the experts who placed 

Problems 2 and 9 in the CE (Conservation of Energy) cluster. Problems 7 

and 12, CE and CLM (Conservation of Energy and Conservation of Linear 

Momentum), in the intermediate dendogram were categorized and labeled 

approximately as was done by the experts who placed Problems 7 and 12 in 

the CLM (Conservation of Linear Momentum) cluster. 

Summarizing, the intermediates categorized and labeled seven of the 

nine clustered problems in approximately the same manner as did the 

experts. 

The intermediate dendogram includes a novice cluster. Such 

clusters do not appear in expert dendograms. 

Analysis of the intermediate dendogram supports the hypothesis: 

Intermediates will reveal a categorizing pattern that is characterized 

by a mixture of deep structures and surface features. 

The first three hypotheses involving the experts were supported but 

only the first hypothesis involving the novices was supported. The 
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results indicate that the comparison of the intermediates with the 

experts is more clearly delineated than it is with the novices. 

Results - Hypothesis 4E 

Experts will categorize a set of physics (mechanics) problems 

according to deep structures regardless of surface features with the 

number of established categories approximately equal to the number of 

deep structures contained within the set. 

The expert dendogram in Figure 28, showing results of Task 4, 

contains three expert clusters. The a priori categories in the fourth 

set of problems compared with the resulting clusters that were labeled 

by the experts are Newton's Second Law (1, 3, 4, 8, 9, 10, 13, 14) vs. 

(1, 10, 9, 4, 3, 14, 8) and Conservation of Energy (2, 5, 6, 7, 11, 12, 

15, 16) vs. (2, 12, 15, 5, 7, 13). The subjects grouped Problems 6 and 

11 in a second CE (Conservation of Energy) cluster separate from the CE 

(Conservation of Energy) cluster consisting of seven problems. Problem 

13, expected in the FMA (Newton's Second Law) cluster, was categorized 

with the first CE (Conservation of Energy) cluster and Problem 16 was 

not clustered. The subjects categorized the problems into the 

clearly-delineated FMA (Newton's Second Law) cluster and two CE 

(Conservation of Energy) clusters, which in spite of their anomalous 

separation, constitute problems that are expected to be CE (Conservation 

of Energy) problems. With the exception of Problems 13 and 16, the 

labeled clusters confirm the expectations of the two a priori 

categories, FMA (Newton's Second Law) and CE (Conservation of Energy). 
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The analysis of the results of Task 4 shows that the a priori 

structure of two categories in the fourth problem set is.satisfied as 

the dendogram contains the expected clusters. Hypothesis 4 is 

supported; Experts categorize a set of physics problems according to 

deep structures regardless of surface features with the number of 

established categories being approximately equal to the number of deep 

structures within the set. 

Clearly, the expert results of Tasks 3 and 4, with the numbers of 

clusters (formed by the subjects) being in the ratio of two to one and 

the number of commensurate categories (a priori) being in the same 

ratio s show that Hypotheses 3 and 4 serve as checks upon one another. 

The support for both hypotheses is subsequently strengthened. 

Results - Hypothesis 4N 

Novices will categorize a set of physics (mechanics) problems 

according to surface features regardless of deep structures with the 

number of established categories approximately equal to the number of 

surface features contained within the set. 

The novice dendogram in Figure 29, showing results of Task 4, 

contains one expert cluster and one novice cluster. The a priori 

surface features in the fourth problem set are Springs (2, 3, 7, 9, 10, 

12, 14, 16) and Inclined Plane (1, 4, 5, 6, 8, 11, 13, 15). Inspection 

of the dendogram shows that the SP (Springs) cluster is a perfect match 

with the a priori SP category. The FMA (Newton's Second Law) cluster, 

while being a perfect match problem-wise with the a priori PL (Inclined 
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Plane) category, differs in the label. 

The novice results of Task 4 do not support the hypçthesis. 

Summarizing: 

Hypotheses 1, 2, 3, and 4E 

(involving the experts) accepted 

Hypothesis 3 

(involving the intermediates) accepted 

Hypothesis 1 

( involving novices ) accepted 

Hypotheses 2, 3, and 4N 

(involving novices) rejected. 

Results - Post Hoc Analysis 

The ANOVA procedure (SAS, 1985), with alpha = .05, was used in the 

testing of the two null hypotheses: 

HO(1). There are no significant differences in average 

DEGREE scores among the novice subjects when 

categorized on the basis of the ACT science 

score, the final grade in Physics 221, and the 

high school class rank. 

H0(2). There is no significant interaction in average 

DEGREE scores among the novice subjects when 

categorized on the basis of the ACT science 

score, the final grade in Physics 221, and the 

high school class rank. 
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Figure 30A shows the values for DEGREE (the dependent variable), 

the numbers of subjects in each group, and the levels of. the ACT science 

scores, the final grades in Physics 221, and the high school class ranks 

(the independent variables). None of the F-values for the main and 

interaction effects are significant (see Figure 30B), resulting in the 

statistical conclusion of failure to reject Hypotheses H0(1) and H0(2) 

with p < 0.05. The research is unable to show that there are 

differences in average DEGREE scores attributable to the ACT science 

score, the final grade in Physics 221, and the high school class rank. 

It is of some interest, however, that the Pearson Correlational 

Coefficient between the average DEGREE score and the final grade in 

Physics 221 is 0.21913 at a significance level of 0.0338 which is less 

than 0.05, the level at which the analysis of variance was run. 
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DEPENDENT VARIABLE 

DEGREE • N 

2.0 

1.5 

1 . 0  

0.5 
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11 

25 
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32 

INDEPENDENT VARIABLES 

LEVELS ACT GRADE RANK 

3 20 55 69 

2 60 30 18 

1 14 9 7 

94 94 94 94 

Figure 30A. Table: Numbers of.subjects and levels of the dependent and 

independent variables for the analysis of variance 

SOURCES OF df SUM OF F-VALUE PR> F 
VARIATION SQUARES 

EXPLAINED 19 12.8395 1.33 0.1912 

RESIDUAL 74 37.5861 

TOTAL 93 50.4255 

ACT 2 2.2136 2.18 0.1203 

GRADE 2 3.0233 2.98 0.0571 

ACT X GRADE 4 0.6494 0.32 0.8640 

RANK 2 0.0134 0.01 0.9869 

GRADE X RANK 4 1.9381 0.95 0.4380 

ACT X GRADE X RANK 2 0.9638 0.95 0.3919 

Figure 30B. Table: Analysis of variance of DEGREE scores by ACT 
science scores, final grades in physics 221, and high 
school class rank 
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CHAPTER V. DISCUSSION 

Categorization Patterns of Novices and Experts 

Hypothesis 2 was designed to determine whether expert-novice 

differences in categorization are independent of the first problem set. 

The novices sorting the first problem set grouped only three of the 

22 clustered problems into the expert CE, CLM (Conservation of Energy 

and Conservation of Linear Momentum) cluster. Hypothesis 1 (novices) 

was accepted. 

The novices sorting the second problem set grouped ten of the 20 

clustered problems into the expert FMA (Newton's Second Law) and CLM 

(Conservation of Linear Momentum) clusters. Hypothesis 2 (novices) was 

rejected. 

Considering these findings, the novice categorization results are 

not shown to be independent of the first problem set. 

Collectively, the novice dendograms related to Tasks 2, 3, and 4 

contain expert clusters with FMA (Newton's Second Law) and CE. 

(Conservation of Energy) categorical content. The 20 problems in these 

clusters include five PUL (Pulleys), nine PL (Inclined Plane), and six 

TM (Terms) surface features: The novices imposed expert categories, 

overriding the surface features, on these problems. The four expert 

dendograms contain only expert clusters. 

Of the hypotheses involving novices, only Hypothesis 1 was 

accepted. All hypotheses involving experts were accepted. The novice 

categorization cannot be shown to be independent of the first set. The 
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expert categorization is independent of the first set. 

It might be argued that the problems in the first set might be more 

definitive in surface features than problems in other sets. This 

possibility is not supported as a few problems common to various sets 

are traced. The problems in this study are numbered in such a manner 

that the part of the number before the decimal point refers to the 

problem set and the part of the number after the decimal point indicates 

one of the problems in that set, e.g., 1.5 indicates Set 1, Problem 5 

and 3.6 indicates Set 3, Problem 6. Problems 1.5, 2.5, and 4.5 are 

identical. They are in the FR (Friction), FR, PL (Friction and Inclined 

Plane), and FMA, CE (Newton's Second Law and Conservation of Energy) 

clusters in the respective dendograms. Problems 2.6, 3.6, and 4.6 are 

identical and are in the FR, PL (Friction and Inclined Plane), FMA 

(Newton's Second Law), and the FMA, CE (Newton's Second Law) clusters in 

the respective dendograms. The same problems are found in clusters that 

are not the same. 

Relationships between Schemata and DEGREE 

Chi et al. (1881) hold that the selected categories constitute the 

schemata that determine the quality of the representation process. 

Kinsley, Hayes, and Simon (1978) claim that such schemata exist as they 

show that college students can classify algebra problems in types that 

are functions of underlying principles. Silver (1981) asked 

seventh-grade students to sort 16 word problems and to solve 12 of these 

problems. Analysis of the data showed that the good problem solvers 
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categorized problems primarily by the processes that they intended to 

use in the subsequent solutions and that the poor problem solvers tended 

to use the content of the problem statements. It appears that 

categories are fundamental to problem representations. Representations 

determine the nature of problem solutions (Newell and Simon, 1972; 

deKleer, 1977; Novak, 1977; Simon and Simon, 1978; Larkin, 1980, Mayer, 

1983). 

Two problems used in this study are now considered: 

1.5 A block of mass M starts "up an incline of 
(2.5) angle theta with respect to the horizontal, 
(4.5) with an intial velocity v. How far will it 

slide up the plane if the coefficient of 
friction is mu? (Halliday and Resnick, 
1974, p. 133). 

2.6 À child of mass M descends a slide of 

(3.6) height h and reaches the bottom with a 
(4.6) speed of v. Calculate the amount of heat 

generated. 

A group of seventeen novices solved Problem 1.5 (same as 2.5 and 4.5) 

and a group of sixteen novices solved Problem 2^6 (same as 3.6 and 4.6) 

with both groups randomly assigned to the problems. 

Recall that the DEGREE variable measures the degree to which the 

solution to a problem fits the imposed category and the degree to which 

the imposed category is an expert category leading to a correct 

solution. The scores of the novices were distributed among the possible 

values of DEGREE (0, 0.5, 1.0, 1.5, and 2.0) with approximately equal 

frequencies for both groups. Each group of novices categorized and 

solved a problem that differs in text from that solved by the other 

group. The numerical differences in the attained DEGREE scores in each 
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group show approximately the same pattern. The experts who sorted and 

solved the same two problems have, without exception, a value of 2.0 

(maximum value) for DEGREE. 

A problem solver describes the environment, in this case the 

statement of a physics problem, and attempts to solve the problem by 

mental operations on this description, i.e., the reresentation. 

Representations are viewed as organized knowledge structures in 

short-term memory. Knowledge in long-term memory is used in the 

formation of a problem representation. This knowledge is accessed when 

a problem solver categorizes a problem. Part of the nature of the 

schemata in long-term memory may thus be inferred from categorization 

patterns. 

The DEGREE variable, being an operational measure of "expert-like" 

behavior, describes the type of categorization and the match between 

categorization and the subsequent solution (see page 83 for method of 

calculation). Differences in DEGREE values among the novices thus 

indicate differences in the schemata in their long-term cognitive 

structure. 

It is inferred that differences in DEGREE values across problems 

(different in text but alike in surface features and deep structures) 

having approximately the same distributions among the possible values of 

the variable, indicate differences in the schemata of the subjects. 

The rejection of the three hypotheses involving novices is more 

likely due to differences among the schemata of the novice subjects 

rather than being caused by differences in the problems in the first set 
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and those in the other three sets. In view of the attained DEGREE 

scores, the differences among novice schemata are of a lesser degree 

than the marked differences between novice and expert schemata. 

Novice Differences 

Eleven novices (12 %) attained a score of 2.0 on the DEGREE 

variable, i.e., they imposed an expert category on the problem solved by 

them and subsequently solved the problem correctly within the imposed 

category: They functioned like the experts in this study. Seventeen 

novices (18 %), not including the 11 aforementioned subjects, attained a 

score of 1.0 on the A part of the DEGREE variable, i.e., the solution 

fits the imposed category: They functioned like the subjects in the 

Silver (1981) study. 

Differences in average DEGREE scores exist but this research, using 

the analysis of variance, is unable to show that these differences are 

related to the ACT science score, the final grade in Physics 221, and 

the high school class rank. However, the Pearson Correlation. 

Coefficient between DEGREE and the final grade in Physics 221, in spite 

of having a small value (0=21913), is significant at 0.0338. 

The theoretical model designed and tested by Heller and Reif 

(1984), with the knowledge and procedures necessary for human problem 

solvers to generate good representations of scientific problems, allowed 

subjects to construct improved representations. These investigators 

hold that problem-solving deficiencies exist in students who understand 

basic physics concepts but do not have the more strategic knowledge 
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specified In the formulated model. This kind of knowledge, possessed by 

experts, according to Heller and Reif (1984), is seldom taught 

explicitly in physics courses. 

The DEGSEE variable involves categorization which is linked to 

representation. If knowledge possessed by experts (including the 

ability to form good representations) is seldom taught explicitly, a 

failure in finding relationships between the final grades in Ptysics 221 

and the attained scores on the DEGREE variable seems reasonable. The 

novice sample, however, includes 12 % who functioned like experts and 18 

% who functioned like the subjects in the Silver (1981) study. It seems 

equally reasonable to assume that a given amount of expert behavior is 

taught (implicitly or explicitly) in Physics 221. The use of 

multiple-choice examinations, with their limitations in testing 

strategic knowledge, in Physics 221 is a more prosaic explanation of the 

absence of a grade-DEGREE relationship. 

Return to the Research Question 

Do novices and experts differ in the categorization of physics 

(mechanics) problems? 

The findings of this research confirm the Chi et al. (1981) results 

regarding experts: Experts categorize according to deep structures. 

The behavior of novices is more complex. Novices use both surface 

features and deep structures in the categorization process. Novices 

demonstrate a lesser degree of consistency in the categorization 

process. Approximately one third of the novices demonstrate expert 
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behavior. 

The inclusion of larger numbers of subjects than is customary in 

this kind of research has resulted in a greater degree of generalization 

and has revealed the more complex behavior of novices as they categorize 

mechanics problems. The use of dendrograms and the DEGREE variable allow 

for an increase in reproducibility. 

Suggestions for Further Research 

1. This study found marked differences in DEGREE scores 

attained by the novices. It was inferred that such 

differences are indicative of differences in the 

schemata of the novices. A longitudinal study in­

vestigating when and how such differences originate 

may clarify the categorization process in ways that 

would allow for classroom testing and use of 

theoretical models such as that by Heller and 

Reif (1984)J discussed in the problem-

representation section of Chapter II. 

2= The differences in DEGREE scores and the final 

grades in Physics 221 (r = 0.21913 at a sig­

nificance level of 0.0338) can be investigated 

by the replication of this study with the 

accompanying use of tests in which subjects 

solve problems of the the types used in 

this study. These tests may be constructed in 
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order to serve the purposes of such an investi­

gation and the evaluative program in a calculus-

based physics course. 

3. Some of the problems used in this study are typical 

of problems that are often used as examples in 

physics texts for the introduction of 

topics such as the conservation of mechanical 

energy. Other are similar to problems commonly 

assigned for homework. Problems 1.5 and 2.6, 

discussed in some detail earlier in this chapter, 

are examples of such types. Students may indeed 

mimic deep structures by merely associating 

some of the problems used in this study with 

particular sections of physics texts. A study 

including more difficult problems that are not 

ordinarily used in lecture or homework 

assignments may be designed to establish or unmask 

such mimicry. 
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PROBLEM REFERENCES MP PROBLEMS - PROBLEM SET 1 

1. Problem Reference 

Halllday, D. & Resnick, R. Fundamentals of Physics. New 
York: John Wiley & Sons 1974. 

2. Problems 

1.1 - Two blocks of mass M(l) and M(2) are attached by a spring. They 

rest on a frictionless surface. If the two are given velocities such 
that the first travels at velocity V(l) towards the center of mass, 
which remains at rest, what is the velocity of the second? (p. 149). ' 

1.2 - A girl (mass M) stands on the edge of a merry-go-round (mass lOM, 
radius R, rotational inertia I) that is not movfng. She throws a rock 

(mass m) in a horizontal direction, tangent to the outer edge of the 
merry-go-round. The speed of the rock relative to the ground is V. 
Neglecting friction, what is the angular speed of the merry-go-round? 

(p. 208a). 

1.3 - A block of mass M(l) is put on a plane inclined at an angle 0 to 
the horizontal and is attached by a cord parallel to the plane over a 
pulley at the top to a hanging block of mass M(2). Block M(2) falls a 
distance x in time T. The pulley has a mass M(3) and a radius R, and 
can be considered to be a uniform disk. What is the coefficient of 
friction between the block and the plane? (p. 208). 

1.4 - A hunter has a rifle that can fire 60 gm bullets with a muzzle 
velocity of 900 m/sec. A 40 kg leopard springs at him with a speed of 
10 m/sec. How many bullets must the hunter fire into the leopard in 
order to stop him in his tracks? (p. 151). 

1.5 - A block of mass M starts up an incline of angle 6 with respect to 

the horizontal, with an initial velocity V. How far will it slide up 
the plane if the coefficient of friction isjl? (p. 131). 

1.6 - A block of mass M(l) slides along a frictionless table with a 
velocity V(l). Directly in front of it, and moving in the same 
direction, is a block of mass M(2) moving at a velocity V(2), where V(2) 

is less than V(l). A massless spring with a spring constant K is 
attached to the backside of M(2). When the blocks collide, what is the 
maximum compression of the spring? (p. 171). 

1.7 - A horizontal spring of negligible mass and length L(l) is fastened 
to a wall. A block of mass M is forced against it, compressing the 
spring to length L(2). When the block is released, it moves a distance 
X across a horizontal surface before coming to rest. The force constant 
of the spring is K. What is the coefficient of sliding friction between 
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the block and the table? (pp. 108, 109). 

1.8 - A block of mass M(l) is put on top of a block of mass M(2). In 

order to cause the top block to slip on the bottom one, a horizontal 
force F(l) must be applied to the top block. Assume a frictionless 

table. Find the maximum horizontal force F(2) which can be applied to 
the lower block so that the blocks will move together (p. 94). 

1.9 - Two disks are connected by a stiff spring, one disk directly above 
the other. Can one press the upper disk down enough so that when it is 
released it will spring back and raise the lower disk off the table? 
(p. 128). 

1.10 - A bullet of mass M(l) is fired horizontally into a wooden block 
of mass M(2) at rest on a horizontal surface. The coefficient of 
kinetic friction between block and surface is |j,. The block moves a 
distance L before coming to rest again. Find the speed of the bullet 

(pp. 169, 170). 

1.11 - A man of mass M(l) lowers himself to the ground from a height x 
by holding onto a rope passed over a massless, frictionless pulley and 
attached to a block of mass M(2). The mass of the man is greater than 
the mass of the block. What is the tension in the rope? (p. 91). 

1.12 - A block of mass M hangs from a cord C which is attached to the 
ceiling. Another cord D is attached to the bottom of the block. 

Explain why, if you jerk suddenly on D it will break, but if you pull 
steadily on D, C will break, (p. 86). 

1.13 - A wheel is rotating with an angular speed mon a shaft whose 
rotational inertia is negligible. A second wheel, initially at rest and 
with twice the rotational inertia of the first is suddenly coupled to 

the same shaft. How does the rotational kinetic energy of the system 
change? (p. 208a). 

1.14 - A block of mass M(l) is put on a plane inclined at an angle 0 to 
the horizontal and is attached by a cord parallel to the plane over a 
pulley at the top to a hanging block of mass M(2). The pulley has a 
mass M(3) and a radius R, and can be considered to be a uniform disk. 
The coefficient of kinetic friction between the block and plane is p.. 
Find the tension in the cord on each side of the pulley (p. 208). 

1.15 - A small coin of mass M is placed on a flat horizontal turntable 
rotating at angular velocity CD. The coin is observed to slide off when 
at a distance from the center of the turntable greater than R. What is 
the coefficient of static friction between the coin and the turntable? 
(p. 149). 

1.16 - A block of mass M is dropped from a height x onto a spring of 
force constant K. Neglecting friction, what is the maximum distance the 
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spring will be compressed? (p. 129). 

1.17 - Two particles, one having N times the mass of the other, are held 
together with a compressed spring between them. There is an amount of 
energy E stored in the spring. How much kinetic energy does each have 
after they are released? (p. 170). 

1.18 - Two blocks of mass M(l) and M(2) are attached by a spring. They 

rest on a frictionless surface. Find the ratio of their accelerations 
A(l) and A(2) after they are pulled apart and then released (p. 88). 

1.19 - A man of mass M(l) lowers himself to the ground from a height x 
by holding onto a rope passed over a massless, frictionless pulley and 
attached to another block of mass M(2). The mass of the man is greater 
than the mass of the block, with what speed does the man hit the 
ground? (p. 91). 

1.20 - A man of mass M(l) lowers himself to the ground from a height x 
by holding onto a rope passed over a pulley and attached to another 
block of mass M(2). The pulley has a mass M(3) and a radius R and can 
be considered to be a uniform disk. The mass of the man is greater than 
the mass of the block. With what speed does the man hit the ground? 
(p. 91). 

1.21 - A bullet of mass M(l) strikes a ballistic pendulum of mass M(2). 
The center of mass of the pendulum rises a vertical distance x. 

Assuming the bullet remains embedded in the pendulum, calculate its 
initial speed (p. 170). 

1.22 - Two blocks of masses 1 kg and 3 kg connected by a spring rest on 
a frictionless surface. If the two are given velocities such that the 
first travels at 1.7 meters/sec toward the center of mass, which remains 
at rest, what is the velocity of the second? (p. 149). 

1.23 - A 2 kg block is forced against a horizontal spring of negligible 
mass, compressing the spring by 15 cm. When the block is released, it 
moves 60 cm across a horizontal tabletop before coming to rest. The 
force constant of the spring is 200 nt/meter. What is the coefficient 
of sliding friction between the block and the table? (pp. 108, 108a). 

1.24 - The spring of a spring gun has a force constant K. When the gun 
is inclined at an angle 6 to the horizontal, a ball of mass M is 
projected to a height x. By how much must the spring have been 
compressed initially? (p. 132). 
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PROBLEM REFERENCES AND PROBLEMS - PROBLEM SET 2 

1. Problem References 

Fried J R. Introductory Physics. Boston; AUyn and Bacon, 
1966. 

Giancoli, D. C. General Physics. Englewood Cliffs, NJ: 
Prentice-Hall, 1984. 

Halliday, D. & Resnick, R. Fundamentals of Physics. New 
York: John Wiley & Sons, 1974. 

Kittel, C., Knight, W. D., & Ruderman, M. A. Mechanics, 
Berkeley Physics Course, Vol. 2, 2nd Edition. New York; 

McGraw-Hill, 1973. 

Kleppner, D., & Kalenkow, R. J. An Introduction to 
Mechanics. New York: McGraw-Hill, 1973. 

Miliar, F.• College Physics. New York: Harcourt Brace 

Jovanovich, 1982. 

Rutherford, F. J., Holton, G., & Watson, F. G. Project 
Physics. New York: Holt, Rinehart and Winston, 1981. 

Spiegel, M. R. Theory and Problems of Theoretical 

Mechanics. New York: Schaum, 1967. 

Strong, F. General Physics Workbook. San Francisco: 
Freeman, 1972. 

Weidner, R. T. & Sells, R. L. Elementary Classical 

Physics. Boston, MA: Allyn and Bacon, 1973. 

2. Problems 

2.1 - An object of mass M is suspended from the end of a light cord. 

The cord is pulled to the side by a horizontal force until the angle 
between the cord and the vertical is 30 degrees. What is the magnitude 
of the horizontal force? (Weidner & Sells, 1973, p. 127). 

2.2 - The force required to compress a horizontal spring an amount x is 
given by F = ax + b(x to the third power) where a and b are constants. 

If the spring is compressed an amount 1, what speed will it give to a 
ball of mass M held against it and released? (Giancoli, 1984, p. 113). 
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2.3 - A uniform drum of radius b and mass M rolls without slipping down 
a plane inclined at an angle The moment of Inertia of the drum about 
its axis is 1(0) = M (R to the second power)/2. Find the acceleration 
of the drum along the plane (Kleppner & Kalenkow, 1973, p. 265). 

2.4 - A 1.0 kg ball is dropped from 1.5 m above a floor. It rebounds to 

1.0 m. The ball is in contact with the floor for 1.0 x 10 s. What 
is the direction and magnitude of the average force on the ball over the 
entire motion? (Weidner & Sells, 1973, p. 105). 

2.5 - A block of mass M starts up an incline of angle 0 with respect to 

the horizontal, with an initial velocity V. How far will it slide up 
the plane if the coefficient of friction is |j. ? (Halliday & Resnick, 
1974, p. 131). 

2.6 - A child of mass M descends a slide of height h and reaches the 
bottom with a speed of v. Calculate the amount of heat generated in the 

process (Giancoli, 1984, p. 162). 

2.7 - A horizontal spring of negligible mass and length L(l) is fastened 
to a wall. A block of mass M is forced against it, compressing the 
spring to length L(2). When the block is released, it moves a distance 
X across a-horizontal surface before coming to rest. The force constant 

of the spring is K. What is the coefficient of sliding friction between 
the block and the table? (Halliday & Resnick, 1974, pp. 108, 108a). 

2.8 - Two bodies of mass 1.5 and 3.5 kg are attached to opposite ends 
of a massless string which passes over a pulley as shown. Taking g to 
be 10 m/s , find the maximum and minimum values of the upward 

external force f on the pulley such that the 3.5 kg mass will remain at 
rest on the table and the string remain taut (Weidner & Sells, 1973, p. 

129). 

f 
A 

1.5'kg 

rmrmrrmrm 

3.5 kg 

TTTTTTTTTTTTTTTTT 



www.manaraa.com

128 

2.9 - Two ice skaters, each of mass M, are traveling in opposite 
directions with speed V but separated by a distance L perpendicular to 
their velocities. When they are just opposite each other, each grabs 
one end of a rope of length L. Each now pulls in on her end of the rope 
until the length of the rope is L/2. What is the speed of each skater? 
(Kittel, Knight, & Ruderiaan, 1973, p. 199). 

2.10 - A helicopter has a main rotor that rotates in a horizontal plane 
about a vertical axis. It has a small auxiliary rotor at the tail that 
rotates in a vertical plane about a horizontal axis. What is the 
function of the auxiliary rotor? (Miller, 1982, p. 165). 

2.11 - A man of mass M(l) lowers himself to the ground from a height x 
by holding onto a rope passed over a massless, frictionless pulley and 
attached to a block of mass M(2). The mass of the man is greater than 
the mass of the block. What is the tension in the rope? (Halliday & 

Resnick, 1974, p. 91). 

lU i i i i i i i i i i i  mn/u  

X 

2.12 - A ball is dropped onto a solid, firmly anchored, smooth inclined 
plane with which it isakes a perfectly elastic collision. The angle 8 of 
the plane with the horizontal is adjusted so that the range r of the 
rebound trajectory is a maximum. What is the value of 9? (Strong, 

1972, p. 275). 
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2.13 - A wheel is rotating with an angular speedffl on a shaft whose 
rotational inertia is negligible. A second wheel, initially at rest and 
with twice the rotational inertia of the first is suddenly coupled to 

the same shaft. How does the rotational kinetic energy of the system 
change? (Halliday & Resnick, 1974, p. 208a). 

2.14 - A tractor is pulling a heavy log in a straight line. One might 
argue that the log pulls back on the tractor just as strongly as the 
tractor pulls on the log. Explain why the tractor indeed does move 
(Rutherford, Holton, & Watson, 1981, p. 98). 

2.15 - A bullet of mass M is shot through a weather vane having a moment 

of inertia I relative to its axis and originally at rest. The bullet 
misses the axis of the weather vane by a distance d, and its speed is 
reduced from v to l/4v in passing through. What is the angular speed of 
the weather vane after the bullet passes through? (Weidner & Sells, 
1973, p. 205). 

2.16 - A particle of mass m slides dowa a frictioniess incline of angle 
CC, mass M, and length L which is on a frictioniess plane. If the 
particle starts initially from rest at the top of the incline, prove 
that the time for the particle to reach the bottom is given by 

\ 1 2 L (H -r m sin ) 

Ng (M + m) g sin (Spiegel, 1967, p. 213). 

2.17 - A string attached to a block of mass 1.0 kg, initially at rest on 
a horizontal frictioniess surface passes over a frictioniess pulley as 
shown. A force of constant magnitude, 5N, is applied to the string, the 
block thereby being accelerated to the right. Find the work done by 
this force on the block, when the block moves from the point where the 
string makes an angle of 30 degrees with the horizontal to the point 
where the string makes an angle of 37 degrees to the horizontal. The 
pulley is 1.0 m above the top of the block (Weidner & Sells, 1973, p. 
149). 
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2.18 - Two blocks of mass M(l) and M(2) are attached by a spring. They 
rest on a frictionless surface. Find the ratio of their accelerations 

A(l) and A(2) after they are pulled apart and then released (Halliday & 

Resnick, 1974, p. 88). 

2.19 - A man of mass M(l) lowers himself to the ground from a height x 
by holding onto a rope passed over a massless, frictionless pulley and 
attached t© another block of mass M(2). The mass of the man is greater 

than the mass of the block. With what speed does the man hit the 
ground? (Halliday & Resnick, 1974, p. 91). 

2.20 - A 70 kg man standing at rest on frictionless ice sees a 10 kg 
object sliding towards him from the north at 5.0 m/s. He catches it and 
throws it southward so that it again travels south at 5.0 m/s. What is 
the man's final velocity? (Weidner & Sells. 1973, p. 74). 

tmim ! ! n r n/v/! / 

777777777777777777777 77777777777 

2.21 - A ladder of mass M and length L rests against a slippery vertical 
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wall at an angle 9 with the vertical. The ladder, of uniform 
construction, is prevented from slipping by friction with the ground. 
Calculate the magnitude of the force exerted by the ladder on the wall 
(Kittel, Knight, & Ruderman, 1973, p. 197). 

2.22 - A light string carrying a 2 kg mass is wrapped around a 10 kg 
solid cylindrical disk of 20 cm radius, supported in frictionless 
bearings as shown. The system is released from rest. Calculate the 

angular speed of the disk at the end of 10 s (Fried, 1966, pp. 149-151). 

M = 10 kg 

_r -J 

2.23 - A rocket-fuel system of total mass M is at rest on a horizontal 

frictionless surface. What is the final velocity of the remaining 
rocket with respect to the surface if one shot of mass 3/5 M is fired to 
the left at speed v relative to the rocket? (Weidner & Sells, 1973, p. 

75). 

2.24 - What happens to the length of day when a sprinter starts running 

in an easterly direction? The sprinter runs along the surface of the 
rotating earth; the change in the length of day is too small to observe 
(Miller, 1982, p. 167). 
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PROBLEM REFERENCES AND PROBLEMS - PROBLEM SET 3 

1. Problem References 

Giancoll, D. C. General Physics» Englewood Cliffs, NJ; 
Prentice-Hall, 1984. 

Halliday, D. & Res nick, R. Fundamentals o£ Physics. New 
York: John Wiley & Sons, 1974. 

Halliday, D. & Resnick, R. Physics. New York: John 

Wiley & Sons, 1981. 

Kyker, G. C. Study Guide. To accompany Physics by P. A. 
Tipler. New York: Worth, 1982. 

Morgan, J. Introduction to University Physics. Boston, 

MS: Allyn and Bacon, 1964. 

Research and Education Association. The Physics Problem 
Solver. New York: Research and Education Association, 
1976. 

Weidner, R. T. & Sells, R. L. Elementary Classical 
Physics. Boston, MA: Allyn and Bacon, 1973. 

2. Problems 

3.1 - If enough thermal energy to melt the polar icecaps were absorbed 
by the earth tomorrow, what would be the effect on the rotation of the 
earth? (Kyker, 1982, p. 88). 

3.2 - The force required to compress a horizontal spring an amount x is 
given by F = ax + b(x to the third power) where a and b are constants. 
If the spring is compressed an amount 1, what speed will it give to a 
ball of mass M held against it and released? (Giancoli, 1984, p. 113). 

3.3 - A block of mass M(l) is put on a plane inclined at an angle 9 to 
the horizontal and is attached by a cord parallel to the plane over a 
pulley at the top to a hanging block of mass M(2). Block M(2) acquires 
momentum as it falls a distance x in time T, causing the momentum of 
M(l) to change. The pulley has a mass M(3) and a radius R, and can be 
considered to be a uniform disk. What is the coefficient of friction 
between the block and the plane? (Halliday & Resnick, 1974, p. 208). 

3.4 - Two blocks of mass M(l) and M(2) are attached by a spring. They 
rest on a frictionless surface. If the two are given velocities such 

that the first travels at velocity v(l) towards the centr • of mass, 
which remains at rest, what is the velocity of the second/ (Halliday & 
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Resnick, 1974, p. 149). 

3.5 - An apparatus consists of two masses which are suspended over a 
pulley by means of a cord with one mass on each end of the cord. M(2) 
is greater than M(l). Assuming the cord and pulley to be massless and 

frictionless, calculate the tension in the cord (Giancoli, 1984, p. 75). 

3.6 - A child of mass M descends a slide of height h and reaches the 
bottom with a speed of v. Calculate the amount of heat generated in the 
process (Giancoli, 1984, p. 132). 

3.7 - The ballistic pendulum is a device used to measure the speed of 
objects such as bullets. The bullet, mass m, is fired into a large 
block of nass M that is suspended like a pendulum. As a result of the 

impact of the bullet, the kinetic energy of the bullet appears as the 
kinetic energy of the block and the embedded bullet. This kinetic 
energy is changed into potential energy of block and embedded bullet as 

the pendulum reaches maximum height, h. Calculate the speed of the 
block (mass M) and the embedded bullet (mass m) just after the collision 
if the bullet has an original speed v (Giancoli, 1984, p. 154). 

3.8 - A child builds a machine that consists, among other things, of a 
number of pulleys and cords. After the child reluctantly has left the 
machine to go to bed, the mouse which had observed the building process 

finds that curiosity outweighs fear and climbs onto the machine. The 
mouse, of mass M, sits at the edge of a motionless pulley that may 
rotate freely, without friction, in a horizontal plane about a vertical 
axis. The pulley has a radius R and a moment of inertia I. The mouse 
now runs around the edge of the pulley in a clockwise direction and 
reaches an angular speed m(mouse) with respect to the ground. What is 
the angular velocity (magnitude and direction) of the pulley? 

////////////////////////////%// 
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3.9 - A particle of mass m is attached to one end of a spring of relaxed 
length 1(0) and force constant K. The spring's other end is fixad in 
position. The particle slides over a horizontal frictionless surface. 
Initially the spring is relaxed, and the particle's velocity v(l) is at 
right angles to the long axis of the spring. At some later time the 

particle reaches point 2; here the spring's length is 1(0) + x and the 
particle's velocity is v(2)j the direction between ̂ (2) and the long 
axis of the spring being 8. Calculate the velocity "^(2), magnitude v(2) 
and direction &, in terms of v(l), 1((0), m, and the spring's extension 
X and stiffness K (Weidner & Sells, 1973, p. 193). 

3.10 - A spring is kept compressed by tying its ends together tightly. 
The spring is placed in acid and dissolves. What happened to the 
potential energy of the spring? (Halliday & Resnick, 1981, p. 127). 

3.11 - A body rests on an adjustable inclined plane. When the angle of 
the plane is increased from zero to some critical value &, the body is 

on the point of sliding downward. Find an expression for the 
coefficient of static friction as a function of the angle (Morgan, 1964, 
pp. 91, 92). 

3.12 - A block of mass M(l) slides down an incline of height h that 
makes an angle 6 with the horizontal. At the bottom it strikes a block 
of mass M(2) which is at rest on a horizontal surface. Assuming an 

elastic collision and negligible friction, determine the speeds after 
collision (Giancoli, 1984, p. 162). 
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n 
3.13 - An apparatus consists of two masses which are suspended over a 
pulley by means of a cord with one mass on each end of the cord. Assume 
that the pulley and cord are massless and frictionless. As M(2), which 
is greater than M(l), strikes a box on the floor of an elevator at rest, 

a certain impulse is delivered to the box by M(2). Now suppose that the 
elevator is moving upward at a constant speed v. How does this motion 
affect the impulse delivered to the box by M(2)? Explain. 

///// y/,,,/////,///, /,//lfiJl//l/////J/////f////////////y// 

////////'//•'/////'Uz J //////U U}j^ ///'///. d 

3.14 - A block of mass M(2) and a block of mass M(l) are attached to 
opposite ends of a massless cord of length 1. M(2) is greater than 

M(l). The cord is hung over a small frictionless and massless pulley a 
distance h from the floor, with M(l) initially at the floor level. Then 
the blocks are released from rest. What is the speed of either block 
when M(2) strikes the floor? (Weidner & Sells, 1973, p. 177). 
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3.15 - An object of mass M attached to the end of a string revolves in a 
circle on a frictionless inclined plane. The other end of the string 
passes through a hole in the incline. The string is at a right angle to 

the plane. Initially the ball rotates at an average speed v(l) in a 
circle of radius r(l). The string is then pulled slowly through the 
hole, still at a right anglej so that the radius is reduced to r(2). 

What is now the average speed v(2)? (Giancoli, 1984, p. 182). 

3.16 - A ball of weight W(l) and a ball of weight W(2) are connected by 

a stretched spring of negligible mass. When the two balls are released 
simultaneously, the initial acceleration of the ball of weight W(l) is 
a(l) westward. What is the acceleration of the ball of weight W(2)? 
(Research and Education Assoc., 1976, p. 110). 

String 
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PROBLEM REFERENCES AND PROBLEMS - PROBLEM SET 4 

1. Problem References 

Glancoll, D. C. General Physics* Englewood Cliffs, NJ: 

Prentice-Hall s 1984. 

Kalliday, D. & Resnick, R. Fundamentals of Physics. New 
York: John Wiley & Sons, 1974. 

Halliday, D. & Resnick, R. Physics. New York: John 

Wiley & Sons, 1978. 

Halliday, D. & Resnick, R. Physics. New York: John 

Wiley & Sons, 1981. 

Lehrman, R. L. & Swartz, C. Foundations of Physics. New 

York: Holt Rinehart and Winston, 1969. 

Rutherford, F. J., Holton, G., & Watson, F. G. Project 

Physics Tests. New York; John Wiley & Sons, 1970. 

Schaum, D. College Physics. New York: Schaum Publishing, 

1961. 

Tip1er, P. A. Physics. New York: Worth, 1982. 

2. Problems 

4.1 - A block slides down an inclined plane with an angle of incline 0. 
The coefficient of kinetic friction between the plane and the block is 
ji,. Calculate the acceleration of the block (Halliday & Resnick, 1981, p. 
88) .  

4.2 - The force required to compress a horizontal spring an amount x is 
given by F = ax + b(x to the third power) where a and b are constants. 
If the spring is compressed an amount 1, what speed will it give to a 
ball of mass M held against it and released? (Giancoli, 1984, p. 113). 

4.3 - A spring with a spring constant K is attached to the ceiling. A 

block of mass M is attached to its lower end. The spring is at a right 
angle to the ceiling. Calculate the tension in the spring. 

4.4 - Two masses - M(l) and M(2) with M(2) greater than M(l) - attached 
by a massless rod, travel down along an inclined plane with an angle of 
incline 0. The rod is parallel to the plane. The coefficient of 
kinetic friction between M(l) and the incline is|i(l) and the 
coefficient of kinetic friction between M(2) and the incline is (J. (2). 
Compute the tension in the rod linking M(l) and M(2) (Halliday & 
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Resnick, 1978, p. 113). 

4.5 - A block of mass M starts up an incline of angle 0 with respect to 
the horizontal, with an initial velocity V. How far will it slide up 
the plane if the coefficient of friction is (j,? (Halliday & Resnick, 
1974, p. 127). 

4.6 - A child of mass M descends a slide of height h and reaches the 

bottom with a speed of v. Calculate the amount of heat generated in the 
process (Giancoli, 1984, p. 162). 

4.7 - A horizontal spring of negligible mass and length L(l) is fastened 
to a wall. A block of mass M is forced against it, compressing the 
spring to length L(2). When the block is released, it moves a distance 

X across a horizontal surface before coming to rest. The force constant 
of the spring is K. What is the coefficient of sliding friction between 

the block and the table? (Halliday & Resnick, 1974, pp. 108, 108a). 

4.8 - A body of mass M is held in position on a frictionless inclined 
plane by a cable that is parallel to the plane. The angle of the 
inclined plane is 9. Calculate the tension in the cable (Tipler, 
1982, p. 113). 

4.9 - An object of mass M, attached to one end of a horizontal, 
compressed spring of negligible mass, rests on a frictionless horizontal 
surface. The other end of the spring is fixed in position. The spring 

is now released. Show that the acceleration of the object is 
proportional to its displacement (while in opposite direction from its 
displacement) with the constant of proportionality being K/M where K is 
the spring constant. 

4.10 - In an experiment to determine the coefficient of friction a block 
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of mass M is pulled at constant speed along a horizontal table top by 
means of a spring of spring constant K. If the length of the spring 
increases from L(l) to L(2) when the block is pulled, what is the 
coefficient of friction? (Lehman & Swartz, 1969, p. 142). 

4.11 - A girl wants to slide down a playground slide so that she will 
have the greatest possible speed when she reaches the bottom (point B). 
Discuss which of the pictured frictionless inclines she should choose. 
W, X, Y, Z are all a distance y above the ground and 6 is a distance d 
above the ground (Rutherford, Holton, & Watson, 1970, p. 13). 

4.12 - Two disks are connected by a stiff spring, one disk directly 
above the other. Can one press the upper disk down enough so that when 
it is released it will spring back and raise the lower disk off the 
table? (Halliday & Resnick, 1974, p. 128). 

4.13 - A block of mass M(l) is put on a plane inclined at an angle & to 
the horizontal and is attached by a cord parallel to the plane over a 
pulley at the top to a hanging block of mass M(2). Block M(2) falls a 
distance x in time T. The pulley has a mass M(3) and a radius R, and 
can be considered to be a uniform disk. What is the coefficient of 
friction between the block and the plane? (Halliday & Resnick, 1974, p. 
208). 

4.14 - A body of mass M is attached to two springs along a line as 
shown. The force constants of the springs are K(l) and K(2). Each 
spring is stretched from its equilibria# pogi tî-Otic Find the ratio of 
the amounts of stretching of the springs (Tipler, 1982, p. 152). 

W X Y Z 
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4.15 - A car of mass M is coasting down a hill with an angle of 
inclination &. At a time when the car's speed is V the driver applies 

the brakes. What force P, parallel to the road, must be applied by the 
brakes if the car is to stop after traveling a distance d? (Schaua, 
1961, p. 53). 

4.16 - A block of mass M(l) slides along a frictlonless table with a 
velocity V(l). Directly in front of it, and moving in the same 

direction, is a block of mass M(2) moving at a velocity V(2), where V(2) 
is less than V(l). A massless spring with a spring constant K is 
attached to the backside of M(2). When the blocks collide, what is the 
maximum compression of the spring? (Halliday & Resnick, 1974, p. 171). 
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